首页> 外文学位 >Experimental and computational investigation of the outer annulus of an annular parachute system.
【24h】

Experimental and computational investigation of the outer annulus of an annular parachute system.

机译:环形降落伞系统外环的实验和计算研究。

获取原文
获取原文并翻译 | 示例

摘要

Annular parachutes have a higher drag coefficient than most other hemispherical-type parachutes, and so also possess the capability to produce more drag force in comparison to other more traditional canopies of equivalent canopy area. However, these annular geometries also possess a higher tendency for unstable operation, including the collapse of the canopy during descent. To investigate the flow about these parachute geometries, a series of computational fluid dynamics simulations were performed in conjunction with wind tunnel experiment. Correlation between CFD simulation and PIV imagery shows that the simulations are a reliable match to experiment, especially in regions near the model. The flowfields resulting from these simulations were investigated through the use of contours of the coefficient of pressure, vorticity magnitude, and the Q-Criterion. These flowfields offer insight to the cyclic production of drag force on the surface of each of the geometries as well as the asymmetrical flow following in their wake. The production of streamwise drag-force is correlated to the shedding of low pressure structures and vortices from the rear of the simulated models, and the use of contours of the Q-Criterion is compared against contours of vorticity magnitudes. Fast Fourier Transform analysis of velocity time-history data and linear stability analysis of time-averaged contours using the Langley Stability and Transition Analysis Code (LASTRAC) help identify the approximate location of transition on the surface of the models, through the use of N-factor correlation. This analysis also identifies the most unsteady regions of the flow, such as the shedding region at the trailing edge of the inner side of the annular models.
机译:环形降落伞比大多数其他半球形降落伞具有更高的阻力系数,因此与同等面积的树冠相比,环形降落伞还具有产生更大阻力的能力。但是,这些环形几何形状还具有较高的不稳定运行趋势,包括在下降过程中顶篷坍塌。为了研究有关这些降落伞几何形状的流动,结合风洞实验进行了一系列计算流体动力学模拟。 CFD仿真和PIV图像之间的相关性表明,仿真是实验的可靠匹配,尤其是在模型附近的区域。通过使用压力系数,涡度量级和Q准则的等高线研究了这些模拟产生的流场。这些流场提供了对每个几何表面上的阻力的循环产生以及尾随其后的不对称流动的洞察力。流阻力的产生与模拟模型后面的低压结构和涡流的脱落相关,并且将Q形轮廓的使用与涡度大小的轮廓进行了比较。使用Langley稳定性和跃迁分析代码(LASTRAC)对速度时程数据进行快速傅立叶变换分析,并对时间平均轮廓进行线性稳定性分析,可通过使用N-来确定模型表面上跃迁的大致位置因素相关性。该分析还确定了流动的最不稳定区域,例如环形模型内侧后缘的脱落区域。

著录项

  • 作者

    Freed, Nicholas M.;

  • 作者单位

    Saint Louis University.;

  • 授予单位 Saint Louis University.;
  • 学科 Engineering Aerospace.;Physics General.
  • 学位 M.S.
  • 年度 2013
  • 页码 89 p.
  • 总页数 89
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号