首页> 外文学位 >Nonadiabatic Molecular Dynamics and Orthogonality Constrained Density Functional Theory.
【24h】

Nonadiabatic Molecular Dynamics and Orthogonality Constrained Density Functional Theory.

机译:非绝热分子动力学和正交约束密度泛函理论。

获取原文
获取原文并翻译 | 示例

摘要

The exact quantum dynamics of realistic, multidimensional systems remains a formidable computational challenge. In many chemical processes, however, quantum effects such as tunneling, zero-point energy quantization, and nonadiabatic transitions play an important role. Therefore, approximate approaches that improve on the classical mechanical framework are of special practical interest.;We propose a novel ring polymer surface hopping method for the calculation of chemical rate constants. The method blends two approaches, namely ring polymer molecular dynamics that accounts for tunneling and zero-point energy quantization, and surface hopping that incorporates nonadiabatic transitions. We test the method against exact quantum mechanical calculations for a one-dimensional, two-state model system. The method reproduces quite accurately the tunneling contribution to the rate and the distribution of reactants between the electronic states for this model system.;Semiclassical instanton theory, an approach related to ring polymer molecular dynamics, accounts for tunneling by the use of periodic classical trajectories on the inverted potential energy surface. We study a model of electron transfer in solution, a chemical process where nonadiabatic events are prominent. By representing the tunneling electron with a ring polymer, we derive Marcus theory of electron transfer from semiclassical instanton theory after a careful analysis of the tunneling mode. We demonstrate that semiclassical instanton theory can recover the limit of Fermi's Golden Rule rate in a low-temperature, deep-tunneling regime.;Mixed quantum-classical dynamics treats a few important degrees of freedom quantum mechanically, while classical mechanics describes affordably the rest of the system. But the interface of quantum and classical description is a challenging theoretical problem, especially for low-energy chemical processes. We therefore focus on the semiclassical limit of the coupled nuclear-electronic dynamics. We show that the time-dependent Schrodinger equation for the electrons employed in the widely used fewest switches surface hopping method is applicable only in the limit of nearly identical classical trajectories on the different potential energy surfaces. We propose a short-time decoupling algorithm that restricts the use of the Schrodinger equation only to the interaction regions. We test the short-time approximation on three model systems against exact quantum-mechanical calculations. The approximation improves the performance of the surface hopping approach.;Nonadiabatic molecular dynamics simulations require the efficient and accurate computation of ground and excited state potential energy surfaces. Unlike the ground state calculations where standard methods exist, the computation of excited state properties is a challenging task. We employ time-independent density functional theory, in which the excited state energy is represented as a functional of the total density. We suggest an adiabatic-like approximation that simplifies the excited state exchange-correlation functional. We also derive a set of minimal conditions to impose exactly the orthogonality of the excited state Kohn-Sham determinant to the ground state determinant. This leads to an efficient, variational algorithm for the self-consistent optimization of the excited state energy. Finally, we assess the quality of the excitation energies obtained by the new method on a set of 28 organic molecules. The new approach provides results of similar accuracy to time-dependent density functional theory.
机译:现实的多维系统的精确量子动力学仍然是一个巨大的计算挑战。但是,在许多化学过程中,诸如隧道效应,零点能量量子化和非绝热跃迁等量子效应起着重要作用。因此,对经典力学框架进行改进的近似方法具有特殊的实践意义。我们提出了一种新型的环状聚合物表面跳变方法,用于计算化学速率常数。该方法融合了两种方法,即考虑隧道效应和零点能量量化的环状聚合物分子动力学,以及结合非绝热跃迁的表面跳跃。我们针对一维两态模型系统,针对精确的量子力学计算测试了该方法。该方法非常准确地再现了该模型系统中隧穿对速率和反应物在电子态之间的分布的影响。半经典瞬子理论是一种与环聚合物分子动力学有关的方法,它通过使用周期经典轨道来解释隧穿。反向势能面。我们研究了溶液中电子转移的模型,该溶液是非绝热事件突出的化学过程。通过用环聚合物表示隧穿电子,在仔细分析隧穿模式之后,我们从半经典瞬时子理论推导了马库斯电子转移理论。我们证明了半经典瞬子理论可以在低温,深隧道法中恢复费米黄金定律速率的极限。;混合量子经典动力学以机械方式处理了几个重要的自由度量子,而经典力学则负担得起地描述了系统。但是,量子描述和经典描述的界面是一个具有挑战性的理论问题,尤其是对于低能化学过程而言。因此,我们关注耦合核电子动力学的半经典极限。我们表明,在时间最短的开关表面跳变方法中使用的电子随时间变化的薛定inger方程仅适用于不同势能面上几乎相同的经典轨迹的极限。我们提出了一种短时解耦算法,该算法将Schrodinger方程的使用仅限于相互作用区域。我们针对精确的量子力学计算在三个模型系统上测试了短时近似。逼近可以提高表面跳变方法的性能。绝热分子动力学模拟需要有效,准确地计算基态和激发态势能表面。与存在标准方法的基态计算不同,激发态特性的计算是一项艰巨的任务。我们采用与时间无关的密度泛函理论,其中激发态能量表示为总密度的函数。我们建议采用绝热式近似,以简化激发态交换相关函数。我们还导出了一组最小条件,以精确地将激发态Kohn-Sham行列式与基态行列式正交。这导致了一种高效,可变的算法,用于激发态能量的自洽优化。最后,我们评估了通过新方法在28个有机分子上获得的激发能的质量。新方法提供的结果与时变密度泛函理论的准确性相似。

著录项

  • 作者

    Shushkov, Philip Georgiev.;

  • 作者单位

    Yale University.;

  • 授予单位 Yale University.;
  • 学科 Chemistry Molecular.;Chemistry Physical.;Physics Molecular.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 193 p.
  • 总页数 193
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号