首页> 外文期刊>Journal of chemical theory and computation: JCTC >Ab Initio Nonadiabatic Molecular Dynamics with Hole-Hole Tamm-Dancoff Approximated Density Functional Theory
【24h】

Ab Initio Nonadiabatic Molecular Dynamics with Hole-Hole Tamm-Dancoff Approximated Density Functional Theory

机译:AB Initio非等压分子动力学与孔洞Tamm-DAMDOFF近似密度函数理论

获取原文
获取原文并翻译 | 示例
           

摘要

The study of photoinduced dynamics in chemical systems necessitates accurate and computationally efficient electronic structure methods, especially as the systems of interest grow larger. The linear response hole-hole Tamm-Dancoff approximated (hh-TDA) density functional theory method was recently proposed to satisfy such demands. The N-electron electronic states are obtained by means of double annihilations on a doubly anionic (N + 2)-electron reference state, allowing for the ground and excited states to be formed on the same footing and thus enabling the correct description of conical intersections. Dynamic electron correlation effects are incorporated by means of the exchange-correlation functional. The accuracy afforded by the simultaneous treatment of static and dynamic correlation in addition to the relatively low computational cost, comparable to that of time-dependent density functional theory (TDDFT), makes it a promising ab initio electronic structure method for on-the-fly generation of potential energy surfaces in nonadiabatic dynamics simulations of photochemical systems, particularly those for which the np* and pi pi* electronic excitations are most relevant. Here, we apply the hh-TDA method to nonadiabatic dynamics simulations of prototypical photochemical processes. First, we demonstrate the ability of hh-TDA to adequately describe conical intersection geometries. We next examine its ability to describe the ultrafast excited state dynamics of photoexcited ethylene through an ab initio multiple spawning (AIMS) dynamics simulation. Finally, we present an alternative variant of the hh-TDA method, which uses orbitals from a fractional occupation number Kohn-Sham (FON-KS) calculation applied to an ensemble with N-electrons. The resulting method is termed floating occupation molecular orbital hh-TDA (FOMO-hh-TDA). This scheme allows us to combine hhTDA with global hybrid functionals and allows us to avoid unbound valence orbitals that may result from an (N + 2)-electron selfconsistent field (SCF) procedure. FOMO-hh-TDA-BHLYP faithfully reproduces the nonadiabatic dynamics of trans-azobenzene (TAB) and is used to characterize the excited state decay pathways from the first (n pi*) excited state.
机译:化学系统中光诱导动力学的研究需要准确和计算有效的电子结构方法,特别是随着感兴趣的系统生长更大。最近提出了近似(HH-TDA)密度函数理论方法的线性响应孔洞Tamm-Dancoff(HH-TDA)密度函数理论方法以满足这些需求。通过双阴离子(N + 2) - 电子参考状态的双重湮灭获得N-电子电子状态,允许在相同的基础上形成地面和激发状态,从而能够正确描述锥形交叉点。动态电子相关效果通过交换相关功能并入。除了相对较低的计算成本外,与相对低的计算成本相当的静态和动态相关性提供的准确性,使其成为现行的承诺AB Initio电子结构方法在光化学系统的非等级动力学模拟中产生潜在能量表面,特别是那些NP *和PI PI *电子激发最相关的能量表面。在这里,我们将HH-TDA方法应用于原型光化学过程的非等压动力学模拟。首先,我们展示了HH-TDA充分描述锥形交叉路口几何形状的能力。我们接下来通过AB Initio多产卵(AIMS)动力学模拟来检查其描述光屏蔽乙烯的超快激发状态动态的能力。最后,我们介绍了HH-TDA方法的替代变体,其使用从分数占用数Kohn-Sham(FON-KS)计算的轨道施加到与N型电子的集合。所得方法称为浮动占用分子轨道HH-TDA(Fomo-HH-TDA)。该方案允许我们将HHTDA与全局混合功能组合,并允许我们避免由(N + 2)-Electron Selfcoonstent Field(SCF)程序可能导致的未结合价轨道。 Fomo-HH-TDA-BHLYP忠实地再现反偶氮苯(TAB)的非等压动力学,并且用于表征来自第一(N PI *)激发状态的激发态衰减途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号