首页> 外文学位 >Solid-Supported Lipid Membranes: Formation, Stability and Applications.
【24h】

Solid-Supported Lipid Membranes: Formation, Stability and Applications.

机译:固体支持的脂质膜:形成,稳定性和应用。

获取原文
获取原文并翻译 | 示例

摘要

This thesis presents a comprehensive investigation of the formation of supported lipid membranes with vesicle hemifusion, their stability under detergents and organic solvents and their applications in molecular biology.;In Chapter 3, we describe how isolated patches of DOPC bilayers supported on glass surfaces are dissolved by various detergents (decyl maltoside, dodecyl maltoside, CHAPS, CTAB, SDS, TritonX-100 and Tween20) at their CMC, as investigated by fluorescence video microscopy. In general, detergents partition into distal leaflets of bilayers and lead to the expansion of the bilayers through a rolling motion of the distal over the proximal leaflets, in agreement with the first stage of the established 3-stage model of lipid vesicle solubilization by detergents.;Subsequently, we study the partitioning of organic solvents (methanol, ethanol, isopropanol, propanol, acetone and chloroform) into isolated bilayer patches on glass in Chapter 4 with fluorescence microscopy. The area expansion of bilayers due to the partitioning of organic solvents is measured. From the titration of organic solvents, we measured the rate of area expansion as a function of the volume fraction of organic solvents, which is proposed to be a measure of strength of interactions between solvents and membranes. From the same experiments, we also measure the maximum expansion of bilayers (or the maximum binding stoichiometry between organic solvents and lipids) before structural breakdown, which depends on the depth of penetration of solvents to the membranes.;In Chapter 5, we investigate the formation of sparsely-tethered bilayer lipid membranes (stBLMs) with vesicle hemifusion. In vesicle hemifusion, lipid vesicles in contact with a hydrophobic alkyl-terminated self-assembled monolayer (SAM) deposit a lipid monolayer to the SAM surface, thus completing the bilayer. Electrical Impedance Spectroscopy and Neutron Reflectivity are used to probe the integrity of stBLMs in terms of their insulating and structural properties. Preparation conditions are screened for those that are optimal for stBLM formation. Concentrations of lipid vesicles, hydrophobicity of SAMs, the presence of calcium and high concentrations of salt are identified as the key parameters. We show that stBLMs can be formed with vesicles of different compositions. Vesicle hemifusion opens up a new route in preserving the chemical compositions of stBLMs and facilitating membrane proteins incorporation.;In Chapter 6, we visualize the hemifusion pathway of giant unilamellar vesicles (GUVs) with planar hydrophobic surfaces at the single vesicle level with fluorescence video microscopy. When a GUV hemifuses to a surface, its outer leaflet breaks apart and remains connected to the surface presumably through a hemifusion diaphragm. Lipids from the outer leaflet are transferred to the surface as a lipid monolayer that expands radially outward from the hemifusion diaphragm, thereby forming the loosely packed outer hemifusion zone.;In Chapter 7, we develop an in vitro assay employing stBLMs and lipid vesicles to examine the functionality of GRASP in membrane tethering. Membrane-bound GRASP on opposing membranes dimerizes and tethers fluorescently-labeled vesicles to stBLMs. The fluorescence intensity of images taken at stBLM surfaces is used to quantify the tethering activity. Both wild type and mutant proteins were studied to shed light on the molecular mechanism of tethering. We show that the GRASP domain is sufficient and necessary for membrane tethering. In addition, the tethering capability of GRASP is impaired when the internal ligands and the binding pockets participating in dimerization are deleted and mutated. Membrane anchors, sizes of vesicles and membrane compositions are explored for their influence on the outcomes of the assay. Furthermore, preliminary analysis from neutron reflectivity measurements shows that both the internal ligands and binding pockets are exposed instead of buried toward the membrane surface. In summary, we establish a functional assay for studying GRASP activity in vitro. (Abstract shortened by UMI.).
机译:本文对囊泡半融合支撑脂质膜的形成,在去污剂和有机溶剂中的稳定性及其在分子生物学中的应用进行了全面的研究。在第三章中,我们描述了如何溶解玻璃表面上支撑的DOPC双层隔离膜片荧光视频显微镜研究了各种清洁剂(癸基麦芽糖苷,十二烷基麦芽糖苷,CHAPS,CTAB,SDS,TritonX-100和Tween20)在其CMC中的分布。通常,去污剂分成双层的远侧小叶,并通过远侧在近侧小叶上的滚动运动导致双层的膨胀,这与已建立的用去污剂脂质脂质增溶的三阶段模型的第一阶段相一致。随后,我们在第四章中用荧光显微镜研究了有机溶剂(甲醇,乙醇,异丙醇,丙醇,丙酮和氯仿)在玻璃上分离的双层膜中的分配。测量由于有机溶剂的分配而引起的双层的面积膨胀。从有机溶剂的滴定中,我们测量了面积膨胀率与有机溶剂体积分数的关系,这被提议用来衡量溶剂与膜之间相互作用的强度。在相同的实验中,我们还测量了结构破裂前双层的最大膨胀(或有机溶剂与脂质之间的最大结合化学计量),这取决于溶剂渗透到膜的深度。在第5章中,我们研究了囊性半融合形成稀疏束缚的双层脂质膜(stBLM)。在囊泡半融合中,与疏水性烷基封端的自组装单层(SAM)接触的脂质囊泡将脂质单层沉积到SAM表面,从而完成了双层。电阻抗谱和中子反射率可用于检测stBLM的绝缘性和结构特性。针对最适合stBLM形成的条件筛选准备条件。脂质囊泡的浓度,SAMs的疏水性,钙的存在和高浓度的盐被确定为关键参数。我们表明stBLM可以与不同组成的囊泡形成。囊泡半融合为保存stBLM的化学成分和促进膜蛋白的掺入开辟了一条新途径。在第6章中,我们用荧光视频显微镜观察了单囊泡水平上具有平面疏水表面的单层巨型囊泡(GUV)的半融合途径。 。当GUV散布到表面时,其外部小叶会破裂并可能通过半融合膜与表面保持连接。来自外部小叶的脂质作为脂质单层转移到表面,该脂质单层从半融合膜径向向外扩展,从而形成松散堆积的外部半融合区。在第7章中,我们开发了一种利用stBLM和脂质囊泡进行体外检测的方法GRASP在膜系留中的功能。相对膜上的膜结合GRASP使二聚体荧光标记的囊泡二聚化,并束缚到stBLM。在stBLM表面拍摄的图像的荧光强度用于量化绑定活动。对野生型和突变蛋白进行了研究,以阐明束缚的分子机制。我们表明,GRASP域对于膜束缚是足够的和必要的。此外,当内部配体和参与二聚化的结合口袋被缺失和突变时,GRASP的束缚能力将受到损害。研究膜锚,囊泡的大小和膜成分对测定结果的影响。此外,对中子反射率测量的初步分析表明,内部配体和结合口袋都暴露在外,而不是朝着膜表面掩埋。总而言之,我们建立了用于研究GRASP体外活性的功能测定法。 (摘要由UMI缩短。)。

著录项

  • 作者

    Goh, Haw Zan.;

  • 作者单位

    Carnegie Mellon University.;

  • 授予单位 Carnegie Mellon University.;
  • 学科 Chemistry Biochemistry.;Chemistry Physical.;Physics General.;Biophysics General.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 163 p.
  • 总页数 163
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号