首页> 外文学位 >Structural determinants of protein dynamics, cooperativity and kinetic stability in alpha-lytic protease.
【24h】

Structural determinants of protein dynamics, cooperativity and kinetic stability in alpha-lytic protease.

机译:α-分解蛋白酶中蛋白质动力学,协同作用和动力学稳定性的结构决定因素。

获取原文
获取原文并翻译 | 示例

摘要

Structural information on nonnative states of proteins, including folding intermediates and folding and unfolding transition states is crucial for understanding folding and unfolding mechanisms. Kinetically stable proteins such as alpha-Lytic protease (alphaLP) combine a very high barrier to unfolding with extraordinary unfolding cooperativity to uncouple their native state from the unfolded states. This unusual energetic landscape results in a remarkable resistance to proteolytic destruction and thus is crucial for alphaLP's biological function. The uncoupling of native and unfolded states makes the differences between the native state and the transition state most relevant for protein function and thus, the height of the unfolding barrier rather than the thermodynamic stability is the relevant metric to investigate.;In order to characterize the structural determinants of protein unfolding in alphaLP, I used salt bridges to probe for structural rearrangements and cooperative contributions in the unfolding transition. From these studies, I have identified protein regions that are frequently unfolded in the transition state, as well as a mechanism to couple cooperative contributions from distant regions in the protein. This analysis led to an energetic dissection of cooperativity allowing for a quantitative assessment of this property for the first time. Also, two other findings, support the previous findings of an extremely rigid alphaLP native state: The extremely low native state pKa values for the salt bridge carboxylates point to a significantly dampened native state dynamics strengthening the salt bridges. In addition, experiments investigating the role of the disulfide bridges in alphaLP unfolding found an extreme insensitivity of the unfolding barrier to reducing conditions, suggesting that these disulfide bridges are also protected by rigid native state dynamics and that protein unfolding is all or nothing.;alphaLP folding transition involves and even higher barrier than that for the unfolding transition. Uncatalyzed, a molten-globule like intermediate converts extremely slowly to mature protease. Understanding this transition with structural detail has been the motivation to develop a structure determination method for nonnative states of proteins. Nonnative proteins provide extreme challenges for structure determination; a multiplicity of structural states and aggregation at high enough concentrations to name a couple. The structure determination method I developed involves the use of cross-linkers to identify distance constraints in the protein structure via mass spectrometry. While the structure determination method was not sensitive enough to provide the level of structural detail I aimed to obtain, findings facilitated by precursor ion scanning during the development of this method are crucial to improve the detection limit for future studies.;Last, I studied the substrate length dependent kcat effect for alphaLP substrate catalysis. Crystal structures of alphaLP with varying lengths of boronic acid inhibitors that are thought to mimic one of the tetrahedral intermediates in catalysis were compared in terms of active site protein dynamics. Through the analysis of anisotropic B-factors, a correlation was found with increased thermal motion in catalytic atoms and decreased thermal motion in the substrate binding pocket, and increasing inhibitor length. The latter with the higher overall disorder may provide an explanation for the kcat effect with an increased order in catalytic transition states in the presence of longer substrates.
机译:有关蛋白质非天然状态的结构信息,包括折叠中间体以及折叠和展开过渡状态,对于理解折叠和展开机制至关重要。动力学稳定的蛋白质(例如,α-Lytic蛋白酶(alphaLP))结合了非常高的解开障碍性和非凡的解开合作性,从而将其天然状态与解开状态分离。这种异常的充满活力的景观导致对蛋白水解破坏的显着抵抗,因此对于alphaLP的生物学功能至关重要。天然状态和未折叠状态的解偶联使天然状态和过渡状态之间的差异与蛋白质功能最相关,因此,展开障碍的高度而非热力学稳定性是研究的相关指标。在alphaLP中蛋白质展开的结构决定因素中,我用盐桥探测了在展开转变中的结构重排和协同作用。从这些研究中,我已经确定了在过渡状态下经常展开的蛋白质区域,以及一种耦合蛋白质中远距离区域的合作贡献的机制。这种分析导致了对合作性的积极剖析,从而首次对该特性进行了定量评估。另外,另外两个发现支持先前关于极其严格的αLP原位态的发现:盐桥羧酸盐的原位pKa值极低,这表明显着减弱了原位动力学,从而增强了盐桥。此外,研究二硫键在alphaLP展开中的作用的实验发现,展开键对还原条件极为不敏感,这表明这些二硫键也受到刚性天然状态动力学的保护,并且蛋白质展开是全部或全部。折叠过渡比展开过渡所涉及的障碍更大,甚至更高。未经催化的熔融球状中间体会极其缓慢地转化为成熟的蛋白酶。通过结构细节了解这种转变一直是开发蛋白质非天然状态的结构确定方法的动机。非天然蛋白质对结构测定提出了极大的挑战。足够高的浓度下的多个结构态和聚集体,可以命名为一对。我开发的结构确定方法涉及使用交联剂通过质谱法鉴定蛋白质结构中的距离限制。虽然结构确定方法不够灵敏,无法提供我要获得的结构细节水平,但在此方法开发过程中,前驱体离子扫描所促进的发现对于提高未来研究的检出限至关重要。依赖于底物长度的kcat效应用于alphaLP底物催化。比较了具有不同长度的硼酸抑制剂的αLP的晶体结构,该结构被认为可以模拟催化中的四面体中间体之一,并通过活性位点蛋白质动力学进行了比较。通过对各向异性B因子的分析,发现与催化原子中的热运动增加和底物结合口袋中的热运动减少以及抑制剂长度增加相关。后者具有较高的总体无序性,可以用更长的底物在催化过渡态下以顺序增加的kcat效应提供解释。

著录项

  • 作者

    Erciyas Bailey, F. Pinar.;

  • 作者单位

    University of California, San Francisco.;

  • 授予单位 University of California, San Francisco.;
  • 学科 Chemistry Biochemistry.;Biophysics General.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 168 p.
  • 总页数 168
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号