首页> 外文学位 >Scalable partitioning-driven algorithms for solving complex and emerging problems in VLSI physical design automation.
【24h】

Scalable partitioning-driven algorithms for solving complex and emerging problems in VLSI physical design automation.

机译:可扩展的分区驱动算法,用于解决VLSI物理设计自动化中的复杂问题和新出现的问题。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation presents a number of extensions and applications of multilevel hypergraph-partitioning algorithms for solving some of the emerging, as well as the existing complex problems in the physical-design-automation phase of electronic circuit fabrication. The technology used in electronic circuit fabrication evolves very rapidly, and as a result, it presents a number of challenges in automating the tasks involved. The key challenges are in (i) devising scalable algorithms to handle exponentially increasing design sizes, (ii) devising new algorithms to effectively counter undesirable but inevitable effects associated with the shrinking geometries of electronic circuit manufacturing technologies, and (iii) devising algorithms to solve new problems that arise because of the evolving architectures of pre-fabricated chips, such as FPGAs. This dissertation advocates the use of multilevel hypergraph-partitioning algorithms, as the underlying tools to accommodate scalability requirements because of their availability, near-linear scalability and other desirable properties, such as cut quality of the solutions generated and run time. This dissertation identifies two new partitioning problems; minimizing maximum subdomain degree and cut of k-way partitioning and multi-resource aware partitioning, and proposes effective algorithms for solving them. In addition, this dissertation enhances the primary application of partitioning---placement---by proposing two inventions, namely "bounding box aware terminal propagation" and "perimeter-degree". These are used for improving the accuracy of the objective minimized in partitioning-driven placement methods and for identifying congestion prone clusters in multilevel placement algorithms, respectively.
机译:本文提出了用于解决电子电路制造的物理设计自动化阶段中的一些新兴问题和现有复杂问题的多级超图分割算法的扩展和应用。电子电路制造中使用的技术发展非常迅速,结果,在涉及的任务自动化方面提出了许多挑战。关键挑战在于:(i)设计可扩展算法以处理呈指数增长的设计尺寸;(ii)设计新算法以有效应对与电子电路制造技术的不断缩小的几何形状相关的不良但不可避免的影响;以及(iii)设计解决方案由于诸如FPGA之类的预制芯片的不断发展的架构而产生的新问题。本文提倡使用多级超图分区算法,因为它具有可用性,近线性可扩展性和其他理想的属性(如生成的解决方案的质量和运行时间),可作为满足可扩展性要求的基础工具。本文确定了两个新的分区问题。最小化最大子域度,并减少k路分区和多资源感知分区,并提出了有效的算法来解决这些问题。另外,本论文通过提出“边界盒感知终端传播”和“周边度”这两项发明,增强了分区的主要应用。这些分别用于提高在分区驱动的放置方法中最小化的目标的准确性,并分别用于在多级放置算法中识别易于拥塞的群集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号