首页> 外文学位 >The hydraphile class of synthetic ion channels: Insights into channel-stabilizing interactions.
【24h】

The hydraphile class of synthetic ion channels: Insights into channel-stabilizing interactions.

机译:合成离子通道的亲水性类别:深入了解通道稳定相互作用。

获取原文
获取原文并翻译 | 示例

摘要

Nearly 40 years have passed since the fluid mosaic bilayer model provided the first illuminating insight into the structure of a biological membrane comprised of protein and lipid molecules. Despite tremendous effort worldwide, a detailed picture of membrane structure remains elusive. A phospholipid cell membrane can be comprised of more than 50% by weight proteins, many of which function as channels that span the bilayer and maintain finite control of the delicate osmotic balance required for life. The synthetic ion channels we have termed the hydraphiles are smaller, simpler models of these large protein channels, yet they exhibit ion translocation much like their natural counterparts. We have developed a methodology for studying Na + transport by the hydraphiles based on an ion selective electrode (ISE). Once optimized, this methodology was used to study the mechanism and efficiency of ion transport of the hydraphiles in reconstituted membranes, and hence better understand how interactions between the hydraphile and the bilayer could affect transport. Specifically, we have examined bilayer thickness, and reported that the hydrophobic length of the channel must match the hydrophobic width of the bilayer for the most effective ion transport. A second study examined interactions between the cations provided by the lipid headgroups and the pi-electrons of the hydraphiles sidearms, and how these interactions may be utilized to maximize Na+ transport. We determined that hydraphiles containing arene-based sidearms can form cation-pi interactions with the lipid headgroups and serve to stabilize an active channel conformation in the bilayer. A study of amide bond positioning found that an amide in the channel sidearm resulted in enhanced transport, presumably by stabilizing the sidearm in the bilayer. Finally, we have examined the effect of conformational flexibility on hydraphile activity using a library of hydraphiles containing rigid spacer chains. We found that rigidification of the backbone has mixed results on Na+ transport, and that some rigidity is beneficial. Taken together, a better understanding has emerged of how hydraphiles interact with the bilayer for optimal ion transport. Our results, although conducted with simple channel model systems, have provided significant insights into channel transport which are likely to be applicable to their biological counterparts.
机译:自从流体镶嵌双层模型对由蛋白质和脂质分子组成的生物膜的结构提供了第一个具有启发性的见识以来,已经过去了近40年。尽管在世界范围内付出了巨大的努力,但仍无法获得有关膜结构的详细描述。磷脂细胞膜可以包含按重量计超过50%的蛋白质,其中许多蛋白质可作为跨越双层的通道,并维持对生命所需的微妙渗透平衡的有限控制。我们称之为亲水分子的合成离子通道是这些大型蛋白通道的更小,更简单的模型,但它们却表现出离子易位的特性,就像它们的天然对应物一样。我们已经开发了一种基于离子选择电极(ISE)来研究亲水性分子对Na +转运的方法。优化后,该方法将用于研究亲水物在重构膜中离子迁移的机理和效率,从而更好地了解亲水物和双层之间的相互作用如何影响迁移。具体来说,我们已经检查了双层的厚度,并报告说通道的疏水长度必须与双层的疏水宽度匹配才能获得最有效的离子传输。第二项研究检查了脂质头基团提供的阳离子与亲水侧链的pi电子之间的相互作用,以及如何利用这些相互作用来最大化Na +转运。我们确定,含有基于芳烃的侧链的亲水基团可以与脂质头基形成阳离子-π相互作用,并起到稳定双层中活性通道构象的作用。对酰胺键定位的研究发现,通道侧臂中的酰胺可导致运输增强,大概是通过稳定双层中的侧臂。最后,我们使用含有刚性间隔链的亲水性文库检查了构象柔韧性对亲水性活性的影响。我们发现主链的刚性在Na +传输方面有不同的结果,并且某些刚性是有益的。两者合计,已经出现了更好的理解亲水性如何与双层相互作用以实现最佳的离子传输。尽管使用简单的通道模型系统进行了研究,但我们的结果为通道运输提供了重要见解,很可能适用于其生物学对应物。

著录项

  • 作者

    Weber, Michelle Elizabeth.;

  • 作者单位

    Washington University.;

  • 授予单位 Washington University.;
  • 学科 Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 141 p.
  • 总页数 141
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物化学 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号