首页> 外文学位 >Multi-objective evolutionary algorithms for ecological process models.
【24h】

Multi-objective evolutionary algorithms for ecological process models.

机译:生态过程模型的多目标进化算法。

获取原文
获取原文并翻译 | 示例

摘要

Fitting an ecological process model to a set of data is frequently done by minimizing the residual sum of squares (RSS) between data and model output. However, we may need to consider many component elements of an ecological process when simulating a model rather than just one, and the RSS may not be an appropriate metric for simulation assessment.; For this dissertation, a multi-objective Evolutionary Algorithm (EA) was used to fit a complex ecological process model. As an example, a model of successive hourly shoot growth of a forest tree was used. First, single-objective methods were tried with the RSS; however, the simulation results did not capture the measured data well, especially contraction periods. The current simulated growth is affected by that of the previous hours because the model includes a regression term. Thus, the fitting result could be improved if there was information about the relation between each data.; The multi-objective optimization method allows us to consider contraction and extension periods separately, and these are an important phenomenon in shoot growth. Since we can set more than one objective function, each focused on particular data features. Also, if there is difficulty in achieving some criteria at the same time, analysis of differential effectiveness in capturing contraction and extension, if it occurs, could help to find what and where the deficiency of the model is. These effects of considering more than one objective function motivated using a multi-objective optimization method.; Since the model is complex, many objective functions were required. I implemented elitism, a process to keep the best individuals to the next generations, but this needed to be different from that used in other EAs and obtained the following results: (1) crossover mutation rate should be determined dynamically for an efficient search; (2) from analysis of the results, deficiencies of the model were identified; (3) with the revised model, accuracy of achievement at contraction periods was improved; (4) the model reduced bias, but the error did not become small; more biological information about contraction and expansion is needed.
机译:通过最小化数据和模型输出之间的残差平方和(RSS),通常可以使生态过程模型适合一组数据。但是,在模拟模型时,我们可能需要考虑生态过程的许多组成元素,而不仅仅是一个,而RSS可能不是用于模拟评估的合适度量。本文采用了多目标进化算法来拟合复杂的生态过程模型。例如,使用了林木每小时连续芽生长的模型。首先,使用RSS尝试了单目标方法。然而,模拟结果不能很好地捕获测量数据,尤其是收缩期。由于模型包含回归项,因此当前模拟的增长受前几个小时的增长的影响。因此,如果存在关于每个数据之间的关系的信息,则可以改善拟合结果。多目标优化方法使我们可以分别考虑收缩期和延长期,这是枝条生长的重要现象。由于我们可以设置多个目标函数,因此每个函数都针对特定的数据功能。同样,如果同时难以达到某些标准,则分析捕获收缩和伸展的不同效果(如果发生)可以帮助找出模型的缺陷和缺陷所在。考虑到使用多目标优化方法激励的多个目标函数的这些效果。由于模型很复杂,因此需要许多目标函数。我实施了精英主义,这是将最好的个人留给下一代的过程,但这需要与其他EA使用的精英主义有所不同,并获得以下结果:(1)应该动态确定交叉突变率以进行有效的搜索; (2)从结果分析中找出模型的缺陷; (3)通过修改模型,提高了收缩期的成绩准确性; (4)模型减少了偏差,但误差并未变小;需要更多有关收缩和扩张的生物学信息。

著录项

  • 作者

    Komuro, Rie.;

  • 作者单位

    University of Washington.;

  • 授予单位 University of Washington.;
  • 学科 Mathematics.; Agriculture Forestry and Wildlife.; Biology Ecology.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 242 p.
  • 总页数 242
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 数学;森林生物学;生态学(生物生态学);
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号