首页> 外文学位 >Numerical simulations for the characterization of the back grinding process for silicon wafers.
【24h】

Numerical simulations for the characterization of the back grinding process for silicon wafers.

机译:表征硅晶片背面研磨过程的数值模拟。

获取原文
获取原文并翻译 | 示例

摘要

The development of electronic devices is based on strict weight and size requirements. Smaller, lighter, and higher capacity devices at low costs are normal demands nowadays. In order to achieve this goal, electronic packaging plays a major role in the electronic industry. The thickness of silicon wafers affects directly the package size, so that the thinner the wafer the smaller the electronic package. The optimization of the grinding parameters for silicon wafers is necessary in order to reduce the likelihood of residual stresses and crack nucleation in the machined surface and improve the reliability of electronic packages. This thesis describes numerical simulations performed to characterize the back grinding process for bare silicon wafers and Through-Silicon Via (TSV) wafers using the finite element code ABAQUS. The numerical simulations involved studying the characteristics of the grinding process at three different levels: the residual stresses on the ground surface in bare silicon as well as TSV wafers, the heat generated from the grinding process due to the friction, and the wafer warpage as a result of the film stresses due to the grinding process. In chapters two, three and four, the grinding of the two wafer types was performed by simulating the motion of a diamond particle cutting through successive silicon and TSV layers. The silicon material was modeled using orthotropic elasticity and isotropic plasticity, while the copper vias were modeled using isotropic elasticity and Johnson Cook plasticity. The Poly-Ethylene Terephthalate (PET) material used as a backing tape for the silicon wafer was modeled using the Mooney Rivlin hyper-elastic model. The computed residual stresses and the plastic deformation in the superficial layer of the ground wafer were compared with experimental values from the literature and good correlation was observed. Chapter five describes the work performed to simulate the heat generated during the back grinding process for silicon wafers. The grinding of a silicon wafer with a thickness of 60 mum mounted on a silicon carrier wafer using bond adhesive material was simulated. The heat generated is due to the friction between the grinding wheel and the backside of the silicon wafer, by simulating the grinding process on the macro level. The computed temperature change due to friction in the wafer was compared with experimental and numerical values from the literature, and showed good correlation. Chapter six describes the work performed to simulate the silicon wafer warpage as a function of the wafer thickness and the film stresses. The model developed accounts for the silicon anisotropy to better simulate the deformation. The computed values of the warpage were compared with experimental data, and showed good correlation. The simulation results from the models developed can be used to better understand the local stresses and strain fields in both bare silicon and TSV wafers, the heat generated from the grinding process and the wafer warpage due to the film stresses, and quantify the characteristics of the process of grinding silicon wafers for electronic devices fabrication.
机译:电子设备的开发基于严格的重量和尺寸要求。如今,更便宜的是更小,更轻,容量更大的设备。为了实现这个目标,电子包装在电子工业中起着重要作用。硅晶片的厚度直接影响封装尺寸,因此晶片越薄,电子封装越小。为了减少机械表面残留应力和裂纹成核的可能性并提高电子封装的可靠性,必须优化硅晶片的研磨参数。本文描述了使用有限元代码ABAQUS进行的数值模拟,以表征裸硅晶圆和硅通孔(TSV)晶圆的背面研磨工艺。数值模拟涉及在三个不同级别上研究研磨过程的特性:裸硅以及TSV晶片在地面上的残余应力,由于摩擦而在研磨过程中产生的热量以及晶片翘曲。研磨过程导致薄膜应力的结果。在第二章,第三章和第四章中,通过模拟通过连续的硅层和TSV层切割的金刚石颗粒的运动来进行两种晶片类型的研磨。硅材料使用正交各向异性弹性和各向同性可塑性建模,而铜过孔则使用各向同性弹性和Johnson Cook塑性来建模。使用Mooney Rivlin超弹性模型对用作硅晶片支撑带的聚对苯二甲酸乙二酯(PET)材料进行建模。将计算出的残余应力和磨碎的晶圆表面层中的塑性变形与文献中的实验值进行比较,并观察到良好的相关性。第五章介绍了为模拟硅晶片的背面研磨过程中产生的热量而进行的工作。模拟了使用粘结粘合材料对安装在硅载体晶片上的厚度为60μm的硅晶片的研磨。通过在宏观层面上模拟磨削过程,产生的热量是由于砂轮和硅晶片背面之间的摩擦而产生的。将晶片中因摩擦而计算出的温度变化与文献中的实验值和数值进行比较,并显示出良好的相关性。第六章介绍了根据硅片厚度和膜应力模拟硅片翘曲的工作。开发的模型考虑了硅各向异性,以更好地模拟变形。将翘曲的计算值与实验数据进行比较,并显示出良好的相关性。所开发模型的仿真结果可用于更好地了解裸硅和TSV晶圆中的局部应力和应变场,磨削过程中产生的热量以及由于薄膜应力而导致的晶圆翘曲,并量化晶圆的特性。电子设备制造用硅晶片的研磨工艺。

著录项

  • 作者

    Abdelnaby, Ahmed.;

  • 作者单位

    University of Idaho.;

  • 授予单位 University of Idaho.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 116 p.
  • 总页数 116
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号