首页> 外文学位 >Developing complete conditional probability tables from fractional data for Bayesian belief networks in engineering decision making.
【24h】

Developing complete conditional probability tables from fractional data for Bayesian belief networks in engineering decision making.

机译:根据分数数据为贝叶斯信念网络开发完整的条件概率表,以进行工程决策。

获取原文
获取原文并翻译 | 示例

摘要

Bayesian belief networks (BBN) can be a very powerful technique for decision-making in construction management due to the well-established theoretical foundation and reasoning processes. A major barrier to apply BBN in construction management is the scarcity of data for setting up the networks, which necessitates the involvement of domain experts for the network structure and conditional probability tables. However, the number of probabilities required from the domain expert increases dramatically when the network becomes complex and sometimes it becomes an intractable task for a domain expert to provide the huge quantity of probabilities required in a consistent way. Therefore, this research is focused on developing the means of using fractional or incomplete data to interpolate the whole domain to facilitate and expedite the process of knowledge elicitation.; To fulfil the objective, the research included (1) investigating the method of interpolating incomplete data from one domain expert into a complete set of probabilities; (2) exploring the method of integrating incomplete data from different domain experts into a complete set of probabilities; (3) examining the possible cognitive biases of a domain expert in probability elicitation. Naive BBN were used in two parallel studies on independent knowledge domains, namely, airport development and career plans of university graduates. Domain knowledge was collected using interviews and questionnaires.; The major issues investigated included: the difference between domain experts; the inter-consistency and intra-consistency for each domain expert; the pattern of probability variation; the tendency of the domain experts' responses; and the probability distribution with the existence of a dominant factor in the network. The method of piecewise representation was recommended for developing complete conditional probability tables from fractional data for Bayesian belief networks in engineering decision making.
机译:由于良好的理论基础和推理过程,贝叶斯信念网络(BBN)可以成为建筑管理决策中非常强大的技术。在建筑管理中应用BBN的主要障碍是缺乏用于建立网络的数据,这需要让领域专家参与网络结构和条件概率表的构建。但是,当网络变得复杂时,领域专家所需的概率数量急剧增加,有时对于领域专家而言,以一致的方式提供所需的大量概率成为一项棘手的任务。因此,本研究的重点是开发使用分数或不完整数据对整个域进行插值的方法,以促进和加快知识获取的过程。为了实现这一目标,研究工作包括:(1)研究将一位领域专家的不完整数据插值到一组完整的概率中的方法; (2)探索将来自不同领域专家的不完整数据整合为完整概率的方法; (3)研究领域专家在概率启发中可能的认知偏见。天真BBN被用于两项关于独立知识领域的平行研究中,即机场发展和大学毕业生的职业计划。领域知识是通过访谈和问卷收集的。调查的主要问题包括:领域专家之间的差异;每个领域专家的内部一致性和内部一致性;概率变化的模式;领域专家回应的趋势;网络中存在主导因素的概率分布。建议使用分段表示法从分数数据为工程决策制定贝叶斯信念网络开发完整的条件概率表。

著录项

  • 作者

    Tang, Zhong.;

  • 作者单位

    University of Toronto (Canada).;

  • 授予单位 University of Toronto (Canada).;
  • 学科 Engineering Civil.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 229 p.
  • 总页数 229
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 建筑科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号