首页> 外文学位 >Haloferax volcanii strategies to regulate type IV pilus dependent adhesion and microcolony formation.
【24h】

Haloferax volcanii strategies to regulate type IV pilus dependent adhesion and microcolony formation.

机译:Haloferax volcanii策略调节IV型菌毛依赖的粘附和小菌落的形成。

获取原文
获取原文并翻译 | 示例

摘要

Microorganisms can utilize type IV pili to initiate and maintain biofilms - microbial communities that provide protection against stressful conditions. Because environmental conditions change suddenly, microorganisms have evolved multiple mechanisms to rapidly transition from a planktonic to sessile cell state. Despite the presence of archaea alongside bacteria throughout the environment, including the human microbiome, little is known about how these organisms form and maintain biofilms. Here we use genetic, microscopic and biochemical techniques to investigate multiple strategies the model archaeon Haloferax volcanii employs to permit effective adhesion and microcolony formation, early steps in biofilm formation and maturation, as well as eventual dispersal from biofilms. First, we identified six pilins, PilA1-6, each with a highly conserved hydrophobic stretch (H-domain). Each of these pilins can adhere to surfaces when expressed individually in trans but with diverse phenotypes. PilA1 and PilA2, which in wild-type planktonic cells appear to be the most abundant pilins, adhere less well than wild-type, while PilA3 and PilA4 adhere better. Conversely, PilA5 and PilA6 form microcolonies significantly earlier than wild-type. We furthermore showed that N-glycosylation, dependent on the oligosaccharyltransferase, AglB, regulates the functions of these pilins. A mutant lacking all six pilins, DeltapilA[1-6], has a severe motility defect that can be complemented by expression of any individual PilA pilin in trans. Surprisingly, a hybrid protein containing only the H-domain of the PilA pilins could restore motility in the DeltapilA[1-6] strain, contributing to a model in which pilins sequester a motility inhibitor within the membrane of planktonic cells. Motility was also shown to be regulated by the flagellin FlgA2. Strains lacking flgA2 are hypermotile with longer, more abundant flagella, implicating FlgA2 as an additional factor in inhibiting dispersal from biofilms. From these results, we have demonstrated numerous mechanisms to regulate biofilm formation and dispersal in Hfx. volcanii. These novel mechanisms, some of which are likely conserved across the bacterial and archaeal domains, will advance our understanding of critically understudied members of the microbiome.
机译:微生物可以利用IV型菌毛来引发和维持生物膜-能够抵抗压力条件的微生物群落。由于环境条件突然改变,因此微生物已经进化出多种机制,可以从浮游状态迅速转变为无柄细胞状态。尽管古细菌与包括人类微生物组在内的整个环境中的细菌并存,但对于这些生物如何形成和维持生物膜的了解却很少。在这里,我们使用遗传,微观和生化技术研究模型古细菌Haloferax volcanii所采用的多种策略,以允许有效的粘附和微菌落形成,生物膜形成和成熟的早期步骤以及最终从生物膜中扩散。首先,我们确定了6个菌毛蛋白PilA1-6,每个都具有高度保守的疏水性延伸(H结构域)。当这些反式蛋白各自以反式表达但具有不同的表型时,它们都可以粘附于表面。在野生型浮游细胞中似乎是最丰富的菌毛蛋白的PilA1和PilA2与野生型的粘附力较差,而PilA3和PilA4的粘附力更好。相反,PilA5和PilA6形成的微菌落明显早于野生型。我们进一步显示,取决于寡糖基转移酶AglB的N-糖基化调节这些菌毛蛋白的功能。缺少所有六个菌毛的突变体DeltapilA [1-6]具有严重的运动缺陷,可以通过反式表达任何单个PilA菌毛来弥补这种缺陷。出乎意料的是,仅包含PilA菌毛蛋白H结构域的杂合蛋白可以恢复DeltapilA [1-6]菌株的运动性,从而为菌毛蛋白在浮游细胞膜内螯合运动性抑制剂的模型做出了贡献。运动性也显示出受鞭毛蛋白FlgA2的调节。缺乏flgA2的菌株活动力旺盛,鞭毛更长,更丰富,暗示FlgA2是抑制生物膜扩散的另一个因素。从这些结果,我们已经证明了许多机制来调节Hfx中的生物膜形成和扩散。火山。这些新颖的机制,其中一些可能在整个细菌和古细菌域中都是保守的,将增进我们对微生物组中受到严格研究的成员的理解。

著录项

  • 作者

    Esquivel, Rianne Nicole.;

  • 作者单位

    University of Pennsylvania.;

  • 授予单位 University of Pennsylvania.;
  • 学科 Microbiology.;Molecular biology.;Cellular biology.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 196 p.
  • 总页数 196
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号