首页> 外文学位 >Molecular basis of type IV pilus-dependent motility in Myxococcus xanthus: Mechanism, regulation and nanomechanical analysis.
【24h】

Molecular basis of type IV pilus-dependent motility in Myxococcus xanthus: Mechanism, regulation and nanomechanical analysis.

机译:粘液球菌IV型菌毛依赖运动的分子基础:机理,调控和纳米力学分析。

获取原文
获取原文并翻译 | 示例

摘要

Myxococcus xanthus is a Gram-negative soil bacterium that exhibits complex social behavior. It forms swarming groups under vegetative conditions and aggregates into fruiting bodies under starvation. When starvation is prolonged, cells in the fruiting bodies undergo sporulation. M. xanthus moves over solid surfaces via two motility systems: adventurous (A) motility for individual cell movement, and social (S) motility for coordinated group movement. S-motility plays an essential role in the social lifestyle of M. xanthus, and this dissertation addresses the mechanism and regulation of social motility in M. xanthus.; Two extracellular structures, fibril material and type IV pilus (TFP), are known to be essential for S-motility. TFP powers social motility via attachment to a solid surface and retraction, which pulls the cells forward. The function of extracellular fibril material in S-motility remains elusive. A retraction assay was developed in this study, demonstrating that fibril material can trigger the retraction of TFP, and this retraction can be blocked with an antibody generated against the native PilA (pilin) protein. Further analysis identified amine-sugars in fibril material as the active components for this bioactivity.; The main regulator for TFP function in S-motility is the Frz signal transduction system, which controls pili pole-to-pole switching frequency. The output signal from the Frz system is unknown. Genetic approaches were taken to investigate the role of FrzE, the last component of the Frz pathway. Analysis of motility phenotypes of the resulting mutants revealed that the C-terminal domain of FrzE protein plays a pivotal role in controlling and coordinating both A- and S-motilities in M. xanthus.; In the last part of this dissertation, atomic force microscopy (AFM) was applied to image the cellular ultrastructures (e.g. TFP, fibril material), revealing their morphological details under native conditions and at resolutions comparable to EM. The single molecule force spectroscopy (SMFS) capacity of AFM also allowed us to perform a high-sensitivity mechanical profiling of the M. xanthus surface macromolecules. This analysis identified the surface cohesive substances as exopolysaccharides, providing the first nanomechanical evidence for their involvement in M. xanthus social behavior.
机译:黄曲霉是一种革兰氏阴性土壤细菌,表现出复杂的社会行为。它在营养条件下形成群聚,在饥饿时聚集为子实体。当饥饿时间延长时,子实体中的细胞就会形成孢子。黄腐分支杆菌通过两种运动系统在固体表面上运动:冒险的(A)运动用于单个细胞的运动,社交的(S)运动用于协调的小组运动。 S-运动在M. xanthus的社交生活方式中起着至关重要的作用,本文探讨了M. xanthus的社会运动的机制和调控。已知两种细胞外结构,原纤维材料和IV型菌毛(TFP)对S运动至关重要。 TFP通过附着在坚实的表面上并收缩,从而推动细胞向前运动,从而推动了社会运动。细胞外原纤维物质在S运动中的功能仍然难以捉摸。在这项研究中开发了一种回缩测定法,证明原纤维物质可以触发TFP的回缩,并且可以用针对天然PilA(菌毛蛋白)蛋白生成的抗体来阻止这种回缩。进一步的分析确定了原纤维中的胺糖是这种生物活性的活性成分。 S-运动中TFP功能的主要调节器是Frz信号转导系统,该系统控制菌毛极间切换频率。 Frz系统的输出信号未知。采取了遗传学方法来研究FrzE(Frz途径的最后一个组成部分)的作用。对得到的突变体的运动性表型的分析表明,FrzE蛋白的C末端结构域在控制和协调黄单胞菌的A和S活性方面起着关键作用。在本论文的最后一部分,原子力显微镜(AFM)用于对细胞超微结构(例如TFP,原纤维材料)成像,揭示它们在自然条件下和与EM相当的分辨率下的形态学细节。原子力显微镜的单分子力谱(SMFS)能力还使我们能够对花叶腐霉表面大分子进行高灵敏度的机械分析。这项分析确定了表面黏附物质为胞外多糖,为它们参与了黄花桑social的社会行为提供了第一个纳米力学证据。

著录项

  • 作者

    Li, Yinuo.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Biology Molecular.; Biology Microbiology.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 161 p.
  • 总页数 161
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分子遗传学;微生物学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号