首页> 外文学位 >Gate Stack Design for Threshold Voltage Control of Gallium Nitride Power Transistors.
【24h】

Gate Stack Design for Threshold Voltage Control of Gallium Nitride Power Transistors.

机译:氮化镓功率晶体管阈值电压控制的栅极堆叠设计。

获取原文
获取原文并翻译 | 示例

摘要

Gallium Nitride is an excellent material for power semiconductor applications due to its wide band gap, good thermal conductivity, high mobility and high breakdown field. The availability of high quality GaN on silicon substrates promotes GaN as a future low cost, high power semiconductor material. However, there are still challenges that need to be overcome before AlGaN/GaN devices can provide robust solutions for power applications.;Particularly challenging, is that high mobility GaN transistors are normally-on, which requires a negative gate bias to turn off devices. A gate stack design to enable enhancement mode operation of GaN transistor devices has been developed. Gate dielectrics to reduce losses due to leakage deposited by atomic layer deposition have been characterized and evaluated. SiO2 and HfAlO deposited by atomic layer deposition on GaN have been characterized electrically for the first time. The band alignment of these dielectrics with GaN as well as commonly used Al2O3 and HfO2 dielectrics has also been experimentally determined and reported for the first time. A novel device structure, termed the Flash MOS-HFET, has been designed, simulated and fabricated which allows for enhancement mode GaN transistor operation. This novel device has been characterized and materials and engineering concerns arising from the invented device have been addressed. An optimized Flash MOS-HFET device allows for continuous enhancement mode operation with high threshold voltage, high performance and low gate leakage facilitated by a gate insulator.
机译:氮化镓因其宽带隙,良好的导热性,高迁移率和高击穿场而成为功率半导体应用的极佳材料。硅衬底上高质量GaN的可用性促进了GaN作为未来的低成本,高功率半导体材料的发展。然而,在AlGaN / GaN器件可以为功率应用提供可靠的解决方案之前,仍然需要克服挑战;特别具有挑战性的是高迁移率GaN晶体管常开,这需要负栅极偏置来关闭器件。已经开发出能够实现GaN晶体管器件的增强模式操作的栅极堆叠设计。已经对降低介电层的栅极电介质进行了表征和评估,以降低由于原子层沉积所导致的泄漏而造成的损耗。通过原子层沉积在GaN上沉积的SiO2和HfAlO首次进行了电学表征。这些电介质与GaN以及常用的Al2O3和HfO2电介质的能带对准也已通过实验确定并首次报道。已经设计,模拟和制造了一种新颖的器件结构,称为Flash MOS-HFET,可实现增强型GaN晶体管工作。已经对该新型装置进行了表征,并且已经解决了由本发明装置引起的材料和工程问题。经过优化的Flash MOS-HFET器件可通过栅极绝缘体促进具有高阈值电压,高性能和低栅极泄漏的连续增强模式操作。

著录项

  • 作者

    Kirkpatrick, Casey Joe.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 163 p.
  • 总页数 163
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号