首页> 外文学位 >Splitting Algorithms for Convex Optimization and Applications to Sparse Matrix Factorization.
【24h】

Splitting Algorithms for Convex Optimization and Applications to Sparse Matrix Factorization.

机译:凸优化的分裂算法及其在稀疏矩阵分解中的应用。

获取原文
获取原文并翻译 | 示例

摘要

Several important applications in machine learning, data mining, signal and image processing can be formulated as the problem of factoring a large data matrix as a product of sparse matrices. Sparse matrix factorization problems are usually solved via alternating convex optimization methods. These methods involve at each iteration a large convex optimization problem with non-differentiable cost and constraint functions, which is typically solved by block coordinate descent algorithm. In this thesis, we investigate first-order algorithms based on forward-backward splitting and Douglas-Rachford splitting algorithms, as an alternative to the block coordinate descent algorithm. We describe efficient methods to evaluate the proximal operators and resolvents needed in the splitting algorithms. We discuss in detail two applications: Structured Sparse Principal Component Analysis and Sparse Dictionary Learning. For these two applications, we compare the splitting algorithms and block coordinate descent on synthetic data and benchmark data sets. Experimental results show that several of the splitting methods, in particular Tseng’s modified forward-backward method and the Chambolle-Pock splitting method, are often faster and more accurate than the block coordinate descent algorithm.
机译:可以将机器学习,数据挖掘,信号和图像处理中的几个重要应用公式化为将稀疏矩阵的乘积分解为大数据矩阵的问题。稀疏矩阵分解问题通常通过交替凸优化方法解决。这些方法在每次迭代中都涉及一个具有不可微成本和约束函数的大型凸优化问题,通常通过块坐标下降算法来解决。在本文中,我们研究了基于前向后向拆分和道格拉斯-拉赫福德拆分算法的一阶算法,以替代块坐标下降算法。我们描述了有效的方法来评估分裂算法中所需的近端算子和分辨子。我们将详细讨论两个应用程序:结构化稀疏主成分分析和稀疏词典学习。对于这两种应用,我们比较了合成数据和基准数据集的分割算法和块坐标下降。实验结果表明,其中的几种分割方法,尤其是Tseng的改进的前后向分割方法和Chambolle-Pock分割方法,通常比块坐标下降算法更快,更准确。

著录项

  • 作者

    Rong, Rong.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 M.S.
  • 年度 2013
  • 页码 108 p.
  • 总页数 108
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号