首页> 外文学位 >Failure mechanisms and mechanisms-based life predictions for electron beam physical vapor deposition thermal barrier coatings.
【24h】

Failure mechanisms and mechanisms-based life predictions for electron beam physical vapor deposition thermal barrier coatings.

机译:电子束物理气相沉积热障涂层的失效机理和基于机理的寿命预测。

获取原文
获取原文并翻译 | 示例

摘要

This research is designed to define failure mechanisms and to develop and experimentally validate non-destructive life prediction methodologies for electron beam physical vapor deposition (EB-PVD) thermal barrier coatings (TBCs). It is shown that for the two TBCs of this study ((Ni,Pt)Al and NiCoCrAlY bond coated TBCs) different failure mechanisms are exhibited, and therefore, the selected life prediction methodologies are accordingly different.; For the (Ni,Pt)Al bond coated TBC tested at three temperatures, progressive rumpling of the thermally grown oxide (TGO) and bond coat interface is responsible for the failure at a critical rumpling value. Rumpling is a single value function of TGO thickness, suggesting that TGO growth strains are critical to rumpling, and the TGO growth controls rumpling, which in turn controls spallation life. Associated with rumpling, the TGO stress, as measured by the Photoluminescence Piezospectroscopy (PLPS) technique, decreases linearly with thermal cycles. Longer life specimens exhibit shallower slopes.; The relationships among rumpling rate, stress relaxation rate and spallation life are defined: as temperature increases, rumpling and stress relaxation rates increase, and spallation life decreases. The rumpling of the TGO provides a physical basis for use of TGO stress measurements as a non-destructive method for TBC damage initiation, progression and life prediction.; Temperature-blind remaining life predictions were made successfully using regression and neural network methods based on only TGO stress measurements at three temperatures. The lowest root mean square error for the prediction using neural networks and regression methods was 6.6% and 14.7%, respectively.; Bimodal luminescence spectra, obtained using PLPS, are shown to be related to TGO cracking. The degree of cracking increases initially as theta- transforms to alpha-Al2O3, then decreases as the cracks heal, and then increases again prior to spallation. Area stress maps, based on the bimodal luminescence and average fraction of bimodal spectra with cycles, show damage progression and have the potential for non-destructive prediction of spallation failure.; For NiCoCrAlY bond coated TBCs, damage initiates at localized debonds at the TGO/bond coat interface due to an increasing out-of-plane tensile stress. The spallation of the coating is driven by the strain energy stored in the TGO. (Abstract shortened by UMI.)
机译:这项研究旨在定义失效机理,并开发和实验验证电子束物理气相沉积(EB-PVD)热障涂层(TBC)的非破坏性寿命预测方法。结果表明,对于本研究的两种TBC((Ni,Pt)Al和NiCoCrAlY涂层的TBC)表现出不同的失效机理,因此,所选择的寿命预测方法也相应不同。对于在三个温度下测试的(Ni,Pt)Al粘结涂层的TBC,热生长氧化物(TGO)和粘结涂层界面的逐步起皱是造成临界起皱值的原因。起皱是TGO厚度的单一值函数,表明TGO生长应变对起皱至关重要,而TGO生长控制起皱,进而控制起裂寿命。与起皱有关,通过光致发光压电光谱(PLPS)技术测得的TGO应力随热循环呈线性下降。寿命较长的样品斜率较小。定义了起皱率,应力松弛率和剥落寿命之间的关系:随着温度升高,起皱和应力松弛率增加,而剥落寿命减少。 TGO的起皱为使用TGO应力测量作为TBC损伤开始,发展和寿命预测的非破坏性方法提供了物理基础。仅基于在三个温度下的TGO应力测量,使用回归和神经网络方法成功完成了对温度盲的剩余寿命的预测。使用神经网络和回归方法进行预测的最低均方根误差分别为6.6%和14.7%。使用PLPS获得的双峰发光光谱显示与TGO裂解有关。裂纹的程度最初随着θ-转变为α-Al2O3的增加而增加,然后随着裂纹的愈合而减小,然后在散裂之前再次增加。区域应力图基于双峰发光和具有周期的双峰光谱的平均分数,显示了损伤的进展,并具有无损预测散裂破坏的潜力。对于NiCoCrAlY粘结涂层的TBC,由于平面外拉伸应力的增加,在TGO /粘结涂层界面处的局部脱胶处开始产生破坏。涂层的散裂是由存储在TGO中的应变能驱动的。 (摘要由UMI缩短。)

著录项

  • 作者

    Wen, Mei.;

  • 作者单位

    University of Connecticut.;

  • 授予单位 University of Connecticut.;
  • 学科 Engineering Materials Science.; Engineering Metallurgy.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 214 p.
  • 总页数 214
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;冶金工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号