首页> 美国卫生研究院文献>Nanomaterials >Ceramic Composite Materials Obtained by Electron-Beam Physical Vapor Deposition Used as Thermal Barriers in the Aerospace Industry
【2h】

Ceramic Composite Materials Obtained by Electron-Beam Physical Vapor Deposition Used as Thermal Barriers in the Aerospace Industry

机译:通过电子束物理气相沉积获得的陶瓷复合材料在航空航天工业中用作热障

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper is focused on the basic properties of ceramic composite materials used as thermal barrier coatings in the aerospace industry like SiC, ZrC, ZrB etc., and summarizes some principal properties for thermal barrier coatings. Although the aerospace industry is mainly based on metallic materials, a more attractive approach is represented by ceramic materials that are often more resistant to corrosion, oxidation and wear having at the same time suitable thermal properties. It is known that the space environment presents extreme conditions that challenge aerospace scientists, but simultaneously, presents opportunities to produce materials that behave almost ideally in this environment. Used even today, metal-matrix composites (MMCs) have been developed since the beginning of the space era due to their high specific stiffness and low thermal expansion coefficient. These types of composites possess properties such as high-temperature resistance and high strength, and those potential benefits led to the use of MMCs for supreme space system requirements in the late 1980s. Electron beam physical vapor deposition (EB-PVD) is the technology that helps to obtain the composite materials that ultimately have optimal properties for the space environment, and ceramics that broadly meet the requirements for the space industry can be silicon carbide that has been developed as a standard material very quickly, possessing many advantages. One of the most promising ceramics for ultrahigh temperature applications could be zirconium carbide (ZrC) because of its remarkable properties and the competence to form unwilling oxide scales at high temperatures, but at the same time it is known that no material can have all the ideal properties. Another promising material in coating for components used for ultra-high temperature applications as thermal protection systems is zirconium diboride (ZrB ), due to its high melting point, high thermal conductivities, and relatively low density. Some composite ceramic materials like carbon–carbon fiber reinforced SiC, SiC-SiC, ZrC-SiC, ZrB -SiC, etc., possessing low thermal conductivities have been used as thermal barrier coating (TBC) materials to increase turbine inlet temperatures since the 1960s. With increasing engine efficiency, they can reduce metal surface temperatures and prolong the lifetime of the hot sections of aero-engines and land-based turbines.
机译:本文重点研究了在航空航天工业中用作SiC,ZrC,ZrB等隔热涂层的陶瓷复合材料的基本性能,并总结了隔热涂层的一些主要性能。尽管航空航天工业主要基于金属材料,但更具吸引力的方法是陶瓷材料,它们通常更耐腐蚀,抗氧化和抗磨损,同时具有合适的热性能。众所周知,太空环境呈现出挑战航空航天科学家的极端条件,但同时也提供了生产在这种环境下表现几乎理想的材料的机会。自太空时代开始以来,由于其高的比刚度和低的热膨胀系数,直到今天仍在使用金属基质复合材料(MMC)。这些类型的复合材料具有耐高温和高强度等特性,这些潜在的好处导致在1980年代后期将MMC用于满足最高航天系统要求。电子束物理气相沉积(EB-PVD)技术可帮助获得最终对太空环境具有最佳性能的复合材料,而广泛满足太空工业要求的陶瓷可以是碳化硅,其开发用于标准材料很快,具有许多优点。碳化锆(ZrC)是超高温应用中最有前途的陶瓷之一,因为其卓越的性能以及在高温下能够形成不希望的氧化皮的能力,但与此同时,众所周知,没有一种材料能拥有理想的氧化锆。属性。在用于超高温应用作为热保护系统的组件的涂料中,另一有希望的材料是二硼化锆(ZrB),因为它的熔点高,热导率高且密度相对较低。自1960年代以来,一些具有低热导率的复合陶瓷材料(如碳-碳纤维增强SiC,SiC-SiC,ZrC-SiC,ZrB-SiC等)已用作热障涂层(TBC)材料,以提高涡轮机入口温度。 。随着发动机效率的提高,它们可以降低金属表面温度并延长航空发动机和陆基涡轮机高温部分的寿命。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号