首页> 外文学位 >Failure mechanisms of platinum aluminide bond coat/electron beam-physical vapor deposited thermal barrier coatings.
【24h】

Failure mechanisms of platinum aluminide bond coat/electron beam-physical vapor deposited thermal barrier coatings.

机译:铝化铂粘结涂层/电子束物理气相沉积热障涂层的失效机理。

获取原文
获取原文并翻译 | 示例

摘要

Thermal barrier coatings (TBCs) allow operation of structural components, such as turbine blades and vanes in industrial and aircraft gas engines, at temperatures close to the substrate melting temperatures. They consist of four different layers; a high strength creep-resistant nickel-based superalloy substrate, an oxidation resistant bond coat (BC), a low thermal conductivity ceramic topcoat and a thermally grown oxide (TGO), that is predominantly α-Al 2O3, that forms between the BC and the TBC. Compressive stresses (3–5 GPa) that are generated in the thin TGO (0.25–8 μm) due to the mismatch in thermal coefficient of expansion between the TGO and BC play a critical role in the failure of these coatings.; In this study, the failure mechanisms of a commercial yttria-stabilized zirconia (7YSZ) electron beam-physical vapor deposited (EB-PVD) coating on platinum aluminide (β-(Ni,Pt)Al) bond coat have been identified. Two distinct mechanisms have been found responsible for the observed damage initiation and progression at the TGO/bond coat interface. The first mechanism leads to localized debonding at TGO/bond coat interface due to increased out-of-plane tensile stress, along bond coat features that manifest themselves as ridges. The second mechanism causes cavity formation at the TGO/bond coat interface, driven by cyclic plasticity of the bond coat. It has been found that the debonding at the TGO/bond coat interface due to the first mechanism is solely life determining. The final failure occurs by crack extension along either the TGO/bond coat interface or the TGO/YSZ interface or a combination of both, leading to large scale buckling. Based on these mechanisms, it is demonstrated that the bond coat grain size and the aspect ratio of the ridges have a profound influence on spallation lives of the coating. The removal of these ridges by fine polishing prior to TBC deposition led to a four-fold improvement in life. The failure mechanism identified for the improved coatings indicates absence of both the mechanisms that were responsible for damage initiation and progression and hence the final spallation was very different, accounting for the life improvement.; The change in compressive residual stress in the TGO layer reflects the damage progression in the TGO layer. To this end, the TGO stresses were measured non-destructively as function of thermal cycles using the novel photoluminescence piezospectroscopy (PLPS) technique. The compressive stresses were found to increase in the first few cycles, (up to 10 cycles) and gradually decrease with increasing number of cycles, up to failure. The standard deviation of the measured stress, indicative of the damage evolution, is found to significantly increase just before the failure of the coating. The sensitivity of the TGO stress to the peak temperature amplitude is also established. Application of the PLPS technique was demonstrated for the first time, both on plasma-sprayed and EB-PVD thermal barrier coated turbine-blades.
机译:隔热涂层(TBC)允许结构部件(例如工业和飞机燃气发动机中的涡轮叶片和叶片)在接近基材熔化温度的温度下运行。它们包括四个不同的层。高强度抗蠕变镍基高温合金基体,抗氧化粘合层(BC),低导热陶瓷面涂层和主要由α-Al 2 组成的热生长氧化物(TGO) O 3 ,在BC和TBC之间形成。 TGO和BC之间的热膨胀系数不匹配,在薄TGO(0.25–8μm)中产生的压缩应力(3–5 GPa)在这些涂层的失效中起着至关重要的作用。在这项研究中,已经确定了在铝化铂(β-(Ni,Pt)Al)粘结涂层上商业化的氧化钇稳定的氧化锆(7YSZ)电子束物理气相沉积(EB-PVD)涂层的失效机理。已经发现两种不同的机制负责在TGO /粘结涂层界面处观察到的损伤的发生和发展。第一种机制会导致TGO /粘结涂层界面处的局部脱胶,这是由于平面外拉伸应力的增加,以及沿着表现为脊的粘结涂层特征。第二种机制是由粘合层的循环可塑性驱动,在TGO /粘合层界面形成空腔。已经发现,由于第一种机理,在TGO /粘结涂层界面处的剥离仅取决于寿命。最终故障是由于沿TGO /粘结层界面或TGO / YSZ界面或两者的结合处的裂纹扩展而导致的,从而导致大规模屈曲。基于这些机理,证明了粘合涂层的晶粒尺寸和脊的纵横比对涂层的剥落寿命具有深远的影响。在TBC沉积之前通过精细抛光去除这些隆起导致寿命提高了四倍。确定的改进涂层的失效机理表明,缺少引起损伤发生和发展的两种机理,因此最终的剥落是非常不同的,说明了寿命的改善。 TGO层中压缩残余应力的变化反映了TGO层中的破坏进程。为此,使用新颖的光致发光压电光谱(PLPS)技术对TGO应力进行了无损测量,作为热循环的函数。发现压应力在最初的几个循环中增加(最多10个循环),并随着循环次数的增加而逐渐减小,直至破坏。发现恰好在涂层失效之前,所测应力的标准偏差会明显增加,表明损伤的发展。还确定了TGO应力对峰值温度幅度的敏感性。 PLPS技术的应用首次在等离子喷涂和EB-PVD热障涂层涡轮叶片上得到了证明。

著录项

  • 作者

    Vaidyanathan, Krishnakumar.;

  • 作者单位

    The University of Connecticut.;

  • 授予单位 The University of Connecticut.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 306 p.
  • 总页数 306
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

  • 入库时间 2022-08-17 11:46:49

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号