首页> 外文学位 >A study of single and multi-robot localization: A manifolds approach.
【24h】

A study of single and multi-robot localization: A manifolds approach.

机译:单机器人和多机器人本地化研究:流形方法。

获取原文
获取原文并翻译 | 示例

摘要

We consider the problem of localizing autonomous robots when GPS is not available. Our work consists of two parts. First we examine how the estimation error grows with time when a mobile robot estimates its location from inter-time relative pose measurements without global position or orientation sensors. We show that in both 2-D or 3-D space, both the bias and variance of the position estimation error grows at most linearly with time (or distance traversed) asymptotically. The bias is crucially dependent on the trajectory of the robot. Exact formulas for the bias and the variance of the position estimation error are provided for two specific 2-D trajectories- straight line and periodic. Experiments with a P3-DX wheeled robot and Monte-Carlo simulations are provided to verify the theoretical predictions. A method to reduce the bias is proposed based on the lessons learned. We next consider a group of cooperating robots attempting to localize without the use of GPS. We propose a algorithm for estimating the 3-D pose (position and orientation) of each robot with respect to a common frame of reference. This algorithm does not rely on the use of any maps, or the ability to recognize landmarks in the environment. Instead we assume that noisy relative measurements between pairs of robots are intermittently available, which can be any one, or combination, of the following: relative pose, relative orientation, relative position, relative bearing, and relative distance. The additional information about each robots pose provided by these measurements are used to improve over self-localization estimates. The proposed method is based on solving an optimization problem in an underlying Riemannian manifold (SO(3) x R 3)n(k) by a gradient descent law. The proposed algorithm is easily applicable to 3-D pose estimation, can fuse heterogeneous measurement types, and can handle arbitrary time variation in the neighbor relationships among robots. This algorithm is further refined by choosing a distribution for the various measurement types and developing a maximum likelihood estimator for collaborative localization. Simulations show that the errors in the pose estimates obtained using this algorithm are significantly lower than what is achieved when robots estimate their pose without cooperation. Results from experiments with a pair of ground robots with vision-based sensors reinforce these findings. Additionally, the question of trade-offs between cost (of obtaining a certain type of relative measurement) vs. benefit (improvement in localization accuracy) for the various types of relative measurements is considered. Finally, a set of simulations is present in which our proposed algorithm is compared against two state of the art collaborative localization algorithms. This comparison shows that the proposed method performs better when the error in orientation measurements is large, or when the time interval between inter-robot measurements is large. Finally, we propose an outlier rejection algorithm that functions as a preprocessing step for a pose graph collaborative localization algorithm, such as the one proposed earlier in this work, when all measurements are of the relative pose. Outliers are identified using only the information contained in the remaining relative measurements. In particular, no a priori distribution on the relative measurements is assumed, nor is any information about the absolute pose of the robots utilized. This outlier rejection algorithm exploits properties of pose measurements concatenated over simple cycles in the measurement graph to define an edge consistency cost such that large values are indicative of the presence of an outlier. A hypothesis test approach is then utilized to identify the set of likely outlying measurements. Simulations utilizing the proposed outlier rejection algorithm are presented. The outlier rejection algorithm is shown to successfully identify up to 95% of the outliers in the scenario considered, and successfully mitigate the effect of outliers on collaborative localization.
机译:我们考虑了GPS不可用时对自主机器人进行本地化的问题。我们的工作包括两个部分。首先,我们研究了在没有全局位置或方向传感器的情况下,移动机器人根据时间间隔相对姿态测量估计其位置时,估计误差如何随时间增长。我们表明,在2D或3D空间中,位置估计误差的偏差和方差都随着时间(或距离)的渐近而线性增长。偏差主要取决于机器人的轨迹。针对两个特定的二维轨迹(直线和周期)提供了位置估计误差的偏差和方差的精确公式。提供了P3-DX轮式机器人的实验和蒙特卡洛模拟,以验证理论预测。根据经验教训,提出了一种减少偏差的方法。接下来,我们考虑一组协作机器人,这些机器人在不使用GPS的情况下试图进行定位。我们提出了一种算法,用于估计每个机器人相对于公共参照系的3-D姿势(位置和方向)。该算法不依赖于使用任何地图,也不依赖于识别环境中地标的能力。取而代之的是,我们假设间歇性地获得了成对的机器人之间嘈杂的相对测量值,这些测量值可以是以下各项中的任何一项或组合:相对姿态,相对方向,相对位置,相对方位和相对距离。这些测量提供的有关每个机器人姿势的附加信息用于改善自定位估计。所提出的方法基于通过梯度下降定律解决底层黎曼流形(SO(3)x R 3)n(k)中的优化问题。所提出的算法易于应用于3D姿态估计,可以融合不同的测量类型,并且可以处理机器人之间邻居关系中的任意时间变化。通过为各种测量类型选择分布并开发用于协作定位的最大似然估计器,可以进一步完善该算法。仿真表明,使用该算法获得的姿势估计中的误差明显低于当机器人不配合估计其姿势时所获得的误差。一对带有视觉传感器的地面机器人的实验结果进一步证实了这些发现。另外,考虑了各种类型的相对测量的成本(获得某种类型的相对测量)与收益(定位精度的提高)之间的权衡问题。最后,提供了一组仿真,其中我们提出的算法与两种最新的协作定位算法进行了比较。这种比较表明,当方向测量的误差较大时,或在机器人之间的测量之间的时间间隔较大时,所提出的方法会更好。最后,我们提出一种离群值拒绝算法,作为姿态图协作定位算法的预处理步骤,例如当所有测量值都是相对姿态时,本文中较早提出的算法。仅使用剩余相对度量中包含的信息来识别异常值。特别地,没有假设相对测量的先验分布,也没有关于所使用的机器人的绝对姿势的任何信息。该离群值拒绝算法利用在测量图中的简单循环上串联的姿势测量的属性来定义边缘一致性成本,以使较大的值指示离群值的存在。然后,使用假设检验方法来识别可能的外围测量结果集。提出了利用提出的离群值拒绝算法的仿真。在孤立的场景中,离群值拒绝算法可以成功识别出高达95%的离群值,并成功地减轻了离群值对协作定位的影响。

著录项

  • 作者

    Knuth, Joseph.;

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Engineering Robotics.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 148 p.
  • 总页数 148
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号