首页> 外文学位 >A Genomic and Structural Study of FtsZ Function for Bacterial Cell Division.
【24h】

A Genomic and Structural Study of FtsZ Function for Bacterial Cell Division.

机译:FtsZ功能的细菌细胞分裂的基因组和结构研究。

获取原文
获取原文并翻译 | 示例

摘要

The tubulin homolog FtsZ provides the cytoskeletal framework for bacterial cell division. FtsZ is an essential protein for bacterial cell division, and is the only protein necessary for Z-ring assembly and constriction force generation in liposomes in vitro. The work presented here utilizes structural and genomic analysis methods to investigate FtsZ function for cell division with three separate questions: (1) What is the function of the C-terminal linker peptide in FtsZ? (2) Are there interacting proteins other than those of the divisome that facilitate FtsZ function? (3) Do lateral contact sites exist between protofilaments in the Z ring, resulting in an organized Z-ring substructure?;The FtsZ protein has an ~50 aa linker between the protofilament-forming globular domain and the C-terminal (Ct) membrane-tethering peptide. This Ct linker is widely divergent across bacterial species, and has been thought to be an intrinsically disordered peptide (IDP). We have made chimeras where we have swapped the Escherichia coli IDP for Ct linkers from other bacteria, and even for an unrelated IDP from human a-adducin. Most of these substitutions allowed for normal cell division, suggesting that sequence of the IDP did not matter -any IDP appears to work (with some exceptions). Length, however, was important: IDPs shorter than 39 or longer than 89 aa's had compromised function. We conclude that the Ct linker of FtsZ functions as a flexible tether between the globular domain of FtsZ in the protofilament, and its attachment to FtsA and ZipA at the membrane. As a worm-like-chain, the Ct linker will function as a stiff entropic spring linking the constricting protofilaments to the membrane.;Previous work from our laboratory found that mutant and foreign FtsZ that do not normally function for cell division can function upon acquisition of a second site suppressor mutation, somewhere in the E. coli genome. We expect that some mutant or foreign FtsZ are partially functional for division in E. coli. As such, these FtsZ require another mutation that further enables their function. These suppressing mutations may reveal proteins interacting with FtsZ and the divisome, that have previously been unknown. In the present study, we have identified, via whole genome re-sequencing, single nucleotide polymorphisms that allow 11 different foreign and mutant FtsZ proteins to function for cell division. While we see a trend toward mutations in genes related to general metabolism functions in the cell, we have also identified mutations in two genes, ispA and nlpI , that may be interacting more directly with the cell division mechanism.;Finally, we have devised a screen to identify mutations in FtsZ that may be involved in lateral bonding between protofilaments. There are presently two proposed models of FtsZ substructure: the scattered or the ribbon model. A major difference between these models is that the scattered model proposed no interaction between adjacent protofilaments in the Z ring, while the ribbon model suggests that adjacent protofilaments are bonded laterally to create an organized substructure of aligned protofilaments. Our screen was designed to identify complementary surface-exposed residues that may be involved in lateral bonding. We initially identified two lateral contact candidate residues: R174, and E250 and mutated them to abrogate FtsZ function. We also mutated L272, which is known to make contacts across the protofilament interface, to look for compensating mutations in these contact residues. Using the screen, we identified a number of secondary mutations in FtsZ that can complement these initial loss-of-function mutations. While this screen has not yielded strong candidates for lateral bonding partners, it has emerged as a high-throughput method for screening large libraries of mutant FtsZ proteins in order to identify compensating mutation pairs.
机译:微管蛋白同源物FtsZ为细菌细胞分裂提供细胞骨架框架。 FtsZ是细菌细胞分裂的必需蛋白质,并且是脂质体中Z环装配和产生收缩力所需的唯一蛋白质。本文介绍的工作利用结构和基因组分析方法来研究FtsZ在细胞分裂中的功能,并涉及三个独立的问题:(1)FtsZ中C末端接头肽的功能是什么? (2)是否存在除卵小球蛋白以外的其他相互作用蛋白,这些蛋白促进FtsZ功能? (3)Z环的原丝之间是否存在侧向接触位点,从而形成有组织的Z环亚结构?; FtsZ蛋白在原丝形成球状结构域和C端(Ct)膜之间具有〜50aa的接头-束缚肽。这种Ct接头在细菌物种之间差异很大,并且被认为是一种内在无序的肽(IDP)。我们制作了嵌合体,将大肠杆菌IDP换成其他细菌的Ct接头,甚至换成人类a-adducin的无关IDP。这些替换中的大多数都允许正常的细胞分裂,这表明IDP的顺序无关紧要-任何IDP似乎都起作用(有些例外)。但是,长度很重要:短于39aa或长于89aa的IDP的功能受损。我们得出的结论是,FtsZ的Ct接头在原丝中FtsZ的球状结构域及其在膜上与FtsA和ZipA的连接之间起着柔性束缚的作用。作为一条蠕虫状链,Ct接头将起一个刚性的熵弹簧的作用,将收缩的原丝连接到膜上。我们实验室的先前工作发现,正常情况下不能用于细胞分裂的突变体和外来FtsZ可以在获得后发挥作用大肠杆菌基因组中某处的第二个位点抑制子突变。我们期望某些突变体或外来FtsZ在大肠杆菌中具有部分分裂功能。因此,这些FtsZ需要另一个突变才能进一步发挥其功能。这些抑制性突变可能揭示了与FtsZ和divisome相互作用的蛋白质,以前是未知的。在本研究中,我们已经通过全基因组重新测序确定了单核苷酸多态性,该多态性允许11种不同的外来和突变FtsZ蛋白发挥细胞分裂的功能。虽然我们看到了与细胞中一般代谢功能有关的基因发生突变的趋势,但我们还发现了ispA和nlpI这两个基因的突变,它们可能与细胞分裂机制更直接地相互作用。最后,我们设计了一个筛选以鉴定FtsZ中可能与原丝之间的侧键有关的突变。目前有两种提议的FtsZ子结构模型:分散模型或带状模型。这些模型之间的主要区别在于,分散模型表明Z环中相邻原型丝之间没有相互作用,而带状模型表明,相邻原型丝横向结合在一起,形成了对齐的原型丝的有组织的子结构。我们的筛选器旨在识别可能与侧键结合的互补表面暴露残留物。我们最初确定了两个侧向接触候选残基:R174和E250,并将其突变以消除FtsZ功能。我们还对L272进行了突变,以使其在原丝界面上形成接触,从而寻找这些接触残基中的补偿性突变。使用该屏幕,我们确定了FtsZ中的许多二级突变,它们可以补充这些最初的功能丧失突变。虽然此筛选尚未产生强大的侧键结合候选物,但它已成为一种高通量方法,用于筛选突变FtsZ蛋白的大型文库,以鉴定补偿性突变对。

著录项

  • 作者单位

    Duke University.;

  • 授予单位 Duke University.;
  • 学科 Biology Cell.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 113 p.
  • 总页数 113
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号