首页> 外文学位 >High temperature high power silicon carbide devices packaging processes and materials development.
【24h】

High temperature high power silicon carbide devices packaging processes and materials development.

机译:高温大功率碳化硅器件的封装工艺和材料开发。

获取原文
获取原文并翻译 | 示例

摘要

Silicon power devices have reached their theoretical limits in terms of higher temperature and higher power operation by virtue of the physical properties of the material. SiC has been identified as a material with the potential to replace Si devices because of its superior material advantages. However, there is a lack of reliable packaging techniques and materials for SiC, in particular die attach, wire bonding and die passivation that can survive temperature as high as 500°C.;Based on the high melting point of Au-In alloy (81/19 wt%), it was evaluated as a potential high temperature die attach material using a transient liquid phase bonding process in this study. Thermal cycle test results over the temperature range from 35°C to 400°C and high temperature storage at 450°C results are presented. Vertical cracks developed in the die attach on Mo tabs during the thermal cycling tests and indium segregated to the defects (voids and cracks) during the high temperature storage and thermal cycling tests. This segregation appeared to negatively impact the reliability of the die attach.;The 6mum of nickel or nickel phosphorous commonly used as a barrier layer in conventional ceramic substrate metallization did not prevent Cu diffusion to the surface at a temperature of 450°C. A multi-layer nickel phosphorous structure was found to serve as a good barrier to prevent Cu diffusion for high temperature applications.;The bondability and reliability of large diameter (250mum) gold and platinum wire using thermosonic wedge bonding was investigated. High temperature storage results at 350°C for wire bonds on the substrate metallization and 300°C for die metallizations are presented. A simplified FEMA 2D model was used to understand the effects of bond force and die metallization structure on the failure modes, SiO2 cracking and SiC cratering. The results matched the experimental results very well. This work demonstrated the effects of wire and pad stack metallurgy on bond reliability.;Polyimide PI2611 has been evaluated as a passivation coating material. The results were promising at 300°C; however, higher temperature tests have shown rapid decomposition of the polyimide.;In this work, electrical characteristics of VJFET and SIT diode modules were measured over the temperature range from 25°C to 400°C to demonstrate the feasibility of paralleling SiC power VJFETs to develop Si IGBT replacements. Paralleled VJFETs formed an equivalent switch of much greater current than the single VJFET, and showed a positive temperature coefficient of on-resistance. The paralleled SIT diodes resulted in a lower cut-on voltage than the single SIT diode, and the leakage current of the paralleled SIT diodes was less than 70 muA when Vds = 100 V at 400°C, validating the impressive blocking performance of the SIT diode at extreme temperatures.
机译:由于材料的物理特性,硅功率器件在更高的温度和更高的功率操作方面已达到其理论极限。 SiC由于其优越的材料优势而被认为是有潜力替代Si器件的材料。然而,缺乏可靠的SiC封装技术和材料,尤其是芯片附着,引线键合和芯片钝化,它们可以承受高达500°C的温度。;基于Au-In合金的高熔点(81 / 19 wt%),在此研究中使用瞬态液相键合工艺将其评估为潜在的高温芯片连接材料。给出了在35°C至400°C的温度范围内的热循环测试结果以及在450°C的高温下存储的结果。在热循环测试过程中,模具中产生的垂直裂纹附着在Mo片上,而在高温存储和热循环测试过程中,铟则被隔离到缺陷(空洞和裂纹)上。这种偏析似乎对管芯连接的可靠性产生负面影响。在常规陶瓷基板金属化中通常用作阻挡层的6微米镍或镍磷不会阻止Cu在450°C的温度下扩散到表面。发现多层镍磷结构可作为防止铜在高温应用中扩散的良好阻挡层。;研究了使用热超声楔形键合技术对大直径(250mum)金和铂丝的粘合性和可靠性。给出了在衬底金属化上的引线键合在350°C和对于芯片金属化的300°C下的高温存储结果。使用简化的FEMA 2D模型了解键合力和模具金属化结构对破坏模式,SiO2裂纹和SiC缩孔的影响。结果与实验结果非常吻合。这项工作证明了引线和焊盘堆叠冶金学对键合可靠性的影响。聚酰亚胺PI2611已被评估为钝化涂层材料。在300°C下结果令人满意。然而,更高的温度测试表明聚酰亚胺会快速分解。在这项工作中,在25°C至400°C的温度范围内测量了VJFET和SIT二极管模块的电特性,以证明将SiC功率VJFET并联至开发Si IGBT替代品。并联VJFET形成的等效开关的电流要比单个VJFET大得多,并且导通电阻的温度系数为正。并联的SIT二极管的导通电压低于单个SIT二极管,并且当Vds = 100 V在400°C时,并联的SIT二极管的泄漏电流小于70μA,这证明了SIT令人印象深刻的阻断性能极端温度下的二极管。

著录项

  • 作者

    Wang, Cai.;

  • 作者单位

    Auburn University.;

  • 授予单位 Auburn University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 160 p.
  • 总页数 160
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:41:04

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号