首页> 外文学位 >Packaging of silicon carbide high temperature, high power devices: Processes and materials.
【24h】

Packaging of silicon carbide high temperature, high power devices: Processes and materials.

机译:高温,大功率碳化硅包装:工艺和材料。

获取原文
获取原文并翻译 | 示例

摘要

Silicon carbide (SiC) has unique electrical, thermal and physical properties compared to the Si and GaAs conventionally used in microelectronics as it can operate in the temperature range from 350°C to 500°C. However, there is a lack of reliable packaging techniques and materials for SiC, in particular substrates, die attach, die metallization and die passivation that can survive temperatures as high as 500°C.; Direct bond copper (DBC) Al2O3 substrates in which a thick Cu foil is cladded on Al2O3 has been used for power electronics for many years because of its acceptable heat dissipation capability, high current carrying capability, low coefficient of thermal expansion (CTE) and high mechanical strength. AlN has a very high thermal conductivity and a CTE approximating that of SiC (AN = 4.5ppm/°C vs. SiC = 4.4ppm/°C [1]). However, with thick Cu metallization, the AlN is prone to fracture during thermal cycling due to its low flex strength and fracture toughness [2]. While Si3N4 does not have the thermal conductivity of AlN (Si3N4 = 60W/m•K vs. AlN= 170-250W/m•K), the high fracture toughness of Si3N4 (2.4X AlN) allows thick Cu metallization and provides better thermal cycling performance.; Die attach is another key issue for high temperature operation. This study examined a transient liquid phase bonding technique using eutectic Au-Sn braze with a thick Au (20m) layer electroplated on the DBC Al2 O3 substrate. After brazing and annealing at 400°C, the Sn from the eutectic preform diffused into the substrate Au, lowering the Sn concentration to less than 10% and raising the braze joint melting point to over 400°C. Au-Ge and Au-Ge-Ag braze alloys were also evaluated.; Die metallization plays a role as an adhesion layer and diffusion barrier. It should not degrade during high temperature storage. A sputtered thin film stack of Ti/Ti-W/Au was examined to assess its performance, including its stability during high temperature storage.; In high voltage applications, insulation is required to prevent the breakdown of SiC device passivation or arcing around the edge of the die. Phthalonitrile and polyhedral oligomeric silsesquioxanes (POSS) nanoreinforced polyimides were characterized as high temperature high voltage passivation materials. Ceramic capacitors, one of the passive components needed in a power electronics module, were also examined for high temperature applications up to 300°C.
机译:与微电子中通常使用的Si和GaAs相比,碳化硅(SiC)具有独特的电,热和物理性能,因为它可以在350°C至500°C的温度范围内工作。但是,缺乏可靠的SiC封装技术和材料,特别是可以承受高达500°C温度的衬底,芯片附着,芯片金属化和芯片钝化。由于其可接受的散热能力,高载流能力,低热膨胀系数(CTE)和高导热性,在Al2O3上覆有厚铜箔的直接粘结铜(DBC)Al2O3基板已被用于电力电子技术多年。机械强度。 AlN具有非常高的导热性,其CTE接近SiC(AN = 4.5ppm /°C vs. SiC = 4.4ppm /°C [1])。然而,在厚铜金属化过程中,AlN的弯曲强度和断裂韧性较低,因此在热循环过程中容易断裂[2]。虽然Si3N4不具有AlN的导热性(Si3N4 = 60W / m•K相对于AlN = 170-250W / m•K),但是Si3N4的高断裂韧性(2.4X AlN)可以使较厚的Cu金属化并提供更好的导热性循环性能。管芯附着是高温操作的另一个关键问题。这项研究研究了使用共晶Au-Sn钎焊的瞬时液相键合技术,该钎焊具有在DBC Al2 O3基板上电镀的厚Au(20m)层。在400℃下进行钎焊和退火之后,来自共晶预成型体的Sn扩散到基板Au中,从而将Sn的浓度降低到小于10%,并且将钎焊接头的熔点提高到超过400℃。还评估了Au-Ge和Au-Ge-Ag钎焊合金。模具金属化起到粘附层和扩散阻挡层的作用。在高温存储期间,它不应降解。检验了溅射的Ti / Ti-W / Au薄膜叠层,以评估其性能,包括高温存储期间的稳定性。在高压应用中,需要绝缘以防止SiC器件钝化或管芯边缘周围的电弧击穿。邻苯二甲腈和多面体低聚倍半硅氧烷(POSS)纳米增强聚酰亚胺被表征为高温高压钝化材料。陶瓷电容器是电力电子模块中所需的无源元件之一,还针对300°C的高温应用进行了检查。

著录项

  • 作者

    Liu, Yi.;

  • 作者单位

    Auburn University.;

  • 授予单位 Auburn University.;
  • 学科 Engineering Electronics and Electrical.; Engineering Packaging.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 132 p.
  • 总页数 132
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;包装工程;
  • 关键词

  • 入库时间 2022-08-17 11:39:35

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号