首页> 外文学位 >Integrated electronics and fluidic MEMS for bioengineering.
【24h】

Integrated electronics and fluidic MEMS for bioengineering.

机译:用于生物工程的集成电子设备和流体MEMS。

获取原文
获取原文并翻译 | 示例

摘要

Microelectromechanical systems (MEMS) and microelectronics have become enabling technologies for many research areas. This dissertation presents the use of fluidic MEMS and microelectronics for bioengineering applications. In particular, the versatility of MEMS and microelectronics is highlighted by the presentation of two different applications, one for in-vitro study of nano-scale dynamics during cell division and one for in-vivo monitoring of biological activities at the cellular level.;The first application of an integrated system discussed in this dissertation is to utilize fluidic MEMS for studying dynamics in the mitotic spindle, which could lead to better chemotherapeutic treatments for cancer patients. Previous work has developed the use of electrokinetic phenomena on the surface of a glass-based platform to assemble microtubules, the building blocks of mitotic spindles. Nevertheless, there are two important limitations of this type of platform. First, an unconventional microfabrication process is necessary for the glass-based platform, which limits the utility of this platform. In order to overcome this limitation, in this dissertation a convenient microfluidic system is fabricated using a negative photoresist called SU-8. The fabrication process for the SU-8-based system is compatible with other fabrication techniques used in developing microelectronics, and this compatibility is essential for integrating electronics for studying dynamics in the mitotic spindle. The second limitation of the previously-developed glass-based platform is its lack of bio-compatibility. For example, microtubules strongly interact with the surface of the glass-based platform, thereby hindering the study of dynamics in the mitotic spindle. This dissertation presents a novel approach for assembling microtubules away from the surface of the platform, and a fabrication process is developed to assemble microtubules between two self-aligned thin film electrodes on thick SU-8 pedestals. This approach also allows the in-vitro model to mimic the three-dimensionality of the cellular mitotic spindle that is absent in previous work.;The second application of an integrated bioengineering system discussed in this dissertation is to design and fabricate active electronics and sensors for an in-vivo application to monitor neural activity at the cellular level. Temperature sensors were chosen for a first demonstration. In order for temperature sensors to be able to be implanted into brain interfaces, it is necessary for these devices to be fabricated using processes that are compatible with bio-compatible substrates such as glass and plastic. This dissertation addresses this challenge by developing temperature sensors integrated with biasing circuitry using zinc oxide thin film transistors (TFTs) fabricated on polyimide substrates. The integrated sensors show good temperature sensitivity, which is critical for monitoring neural temperature at the cellular level. This dissertation also describes the unique requirements of encapsulating implantable electronics. For instance, encapsulation schemes must be designed in such a way that they both protect electronic devices from extracellular fluids and also do not interfere with the functionality of these devices. In this work, SU-8 is used as a convenient and effective encapsulation layer. Thermal engineering to prevent active electronics from overheating and to ensure accurate temperature measurement from temperature sensors is also discussed, and a synergistic encapsulation and thermal engineering combination is presented.
机译:微机电系统(MEMS)和微电子技术已成为许多研究领域的使能技术。本文介绍了流体MEMS和微电子技术在生物工程应用中的应用。特别是,MEMS和微电子学的多功能性通过两种不同的应用得以突出显示,一种用于细胞分裂过程中纳米尺度动力学的体外研究,另一种用于细胞水平上生物活性的体内监测。本文讨论的集成系统的第一个应用是利用流体MEMS研究有丝分裂纺锤体中的动力学,这可能会为癌症患者带来更好的化学治疗方法。先前的工作已经开发出在基于玻璃的平台表面上使用电动现象来组装微管(有丝分裂纺锤体的组成部分)的功能。但是,这种平台有两个重要的局限性。首先,基于玻璃的平台需要非常规的微细加工工艺,这限制了该平台的实用性。为了克服该限制,在本文中,使用称为SU-8的负性光致抗蚀剂制造了方便的微流体系统。基于SU-8的系统的制造过程与开发微电子技术中使用的其他制造技术兼容,并且这种兼容性对于集成电子设备以研究有丝分裂纺锤体中的动力学至关重要。以前开发的基于玻璃的平台的第二个限制是它缺乏生物相容性。例如,微管与基于玻璃的平台的表面强烈相互作用,从而阻碍了有丝分裂纺锤体动力学的研究。本文提出了一种从平台表面组装微管的新颖方法,并提出了一种在厚厚的SU-8基座上的两个自对准薄膜电极之间组装微管的制造工艺。这种方法还允许体外模型模拟先前工作中所没有的细胞有丝分裂纺锤体的三维。本论文讨论的集成生物工程系统的第二个应用是设计和制造用于一种在细胞水平上监测神经活动的体内应用程序。选择温度传感器进行首次演示。为了能够将温度传感器植入大脑接口,必须使用与生物相容性基板(例如玻璃和塑料)兼容的工艺来制造这些设备。本论文通过使用在聚酰亚胺衬底上制造的氧化锌薄膜晶体管(TFT)开发与偏置电路集成在一起的温度传感器来解决这一挑战。集成的传感器显示出良好的温度敏感性,这对于在细胞水平上监测神经温度至关重要。本文还介绍了封装可植入电子设备的独特要求。例如,必须以这样的方式设计封装方案:它们既保护电子设备免受细胞外液的侵扰,又不干扰这些设备的功能。在这项工作中,SU-8用作方便有效的封装层。还讨论了热工程技术,以防止有源电子器件过热并确保温度传感器的准确温度测量,并提出了一种封装与热工程技术的组合。

著录项

  • 作者

    Fok, Ho Him Raymond.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Engineering Biomedical.;Nanotechnology.;Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 142 p.
  • 总页数 142
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号