首页> 外文学位 >A study of the nucleation and formation of multifunctional nanostructures using GaN-based materials for device applications.
【24h】

A study of the nucleation and formation of multifunctional nanostructures using GaN-based materials for device applications.

机译:使用基于GaN的材料用于器件应用的多功能纳米结构的成核和形成研究。

获取原文
获取原文并翻译 | 示例

摘要

The objective of this research is to design multi-functional GaN nanostructures for optoelectronic and spintronic applications and to study the growth conditions for epitaxial material using metal-organic chemical vapor deposition (MOCVD).; III-nitrides have been known as prospective materials for semiconductor device applications for a wide range of wavelengths. However, it is more difficult to produce high quality GaN-based semiconductor compounds, compared to GaAs compounds due to the absence of coherently matched substrates. The most common substrate used for GaN growth is sapphire which has a lattice mismatch of 16%. The high dislocation densities resulting from this lattice mismatch may be detrimental to light output efficiency with optoelectronic semiconductors.; Nanostructures are too small to have dislocations as well as they have spatially quantized electronic energy states. This results in more stable thermal perturbation and high quantum efficiency of light emitting devices. But it is also difficult to grow and control nanostructures. In this thesis, multi-functional self-organized GaN nanostructure was investigated.; We have achieved self-organized GaN nanostructures on AlN system using MOCVD. The MOCVD provided a remarkable control ability to form nanostructures. The growth techniques which are obtained from typical bulk GaN growths encouraged the self-organized nanostructure growth. We have changed growth conditions: temperature, V/III ratio, Ga flux, and introduction of anti-surfactants. Especially, the growth temperature and V/III ratio affecting Ga migration and evaporation were optimized at around 800°C and 300 respectively. Growth pressure was also investigated with a wide range. A good result was obtained with lower pressures from 100 to 200 Torr. We kept the pressure 100 Torr in this work. Under these optimized growth conditions, the nanostructure height and diameter were less than 7 nm and 50nm, respectively. The nanostructure density was also enhanced up to the order of 10 cm-2.; We have also achieved self-organized GaN nanostructures on AlGaN system for nearly lattice-matched system (≤ 0.5%) using a new growth technique: metal droplet method. In the method, a liquid droplet condensing from vapor phase transforms crystal solid under chemical vapor deposition conditions at a high temperature. The nanostructure size and density were improved by changing growth parameters. We have optimized the TMGa flux and flow time and island size was apparently minimized and density was maximized at this optimized TMGa flow rate.; The emission wavelength for GaN nanostructure is dependent both on quantum confinement and piezoelectric effect. It was observed that larger dots obtained at a higher V/III ratio resulted in a red shift. The shift to higher energies with a decrease in nanostructure size is attributed to the decrease in piezoelectric effect rather than quantum confinement. The intensity of the PL is dependent on the density of the nanostructures. A higher PL intensity is obtained with a higher density of nanostructures. In addition, a numerical approach was performed to calculate excitonic and optical properties of GaN nanostructure system and we had a good agreement with experimental data.; The magnetic and structural properties of ferromagnetic self-assembled GaN nanostructures have been studied for spintronic applications. Transition metal (TM; Mn or Fe) was incorporated into GaN nanostructures at a relatively low temperature, and the ferromagnetic behavior of GaN:TM nanostructures at room temperature was observed. In addition, atomic force microscopy measurements revealed that TMs affected the surface morphology of these nanostructures. A small amount of TM incorporation affected both island size reduction and nucleation, enhancing quantum confinement as well as ferromagnetism in the GaN:TM nanostructures. The increased island density improved the magnetic characteristic after minimization of island
机译:这项研究的目的是设计用于光电和自旋电子应用的多功能GaN纳米结构,并利用金属有机化学气相沉积(MOCVD)研究外延材料的生长条件。已知III族氮化物是用于宽波长范围的半导体器件应用的预期材料。然而,由于缺乏相干匹配的衬底,与GaAs化合物相比,生产高质量的GaN基半导体化合物更加困难。用于GaN生长的最常见衬底是蓝宝石,其晶格失配为16%。这种晶格失配导致的高位错密度可能不利于光电子半导体的光输出效率。纳米结构太小而不能产生位错,并且它们具有空间量化的电子能态。这导致发光器件更稳定的热扰动和高量子效率。但是,也很难生长和控制纳米结构。本文研究了多功能自组织GaN纳米结构。我们已经使用MOCVD在AlN系统上实现了自组织的GaN纳米结构。 MOCVD提供了卓越的控制能力以形成纳米结构。从典型的块状GaN生长获得的生长技术促进了自组织纳米结构的生长。我们已经改变了生长条件:温度,V / III比,Ga流量和引入抗表面活性剂。特别是,影响Ga迁移和蒸发的生长温度和V / III比分别在约800°C和300°左右优化。还广泛研究了生长压力。在100至200 Torr的较低压力下可获得良好的结果。在这项工作中,我们保持100 Torr的压力。在这些优化的生长条件下,纳米结构的高度和直径分别小于7 nm和50 nm。纳米结构密度也被增强到10cm-2的数量级。我们还使用一种新的生长技术:金属滴法,在AlGaN系统上实现了自组织的GaN纳米结构,用于几乎晶格匹配的系统(≤0.5%)。在该方法中,从气相冷凝的液滴在高温下在化学气相沉积条件下使晶体固体转变。通过改变生长参数可以改善纳米结构的尺寸和密度。我们已经优化了TMGa的通量和流动时间,并且在这种优化的TMGa流速下,岛的尺寸明显最小化,密度最大化。 GaN纳米结构的发射波长取决于量子限制和压电效应。观察到以较高的V / III比获得的较大的点导致红移。随着纳米结构尺寸的减小而向更高能量的转变归因于压电效应的减小而不是量子限制。 PL的强度取决于纳米结构的密度。具有较高密度的纳米结构可获得较高的PL强度。另外,采用数值方法计算了GaN纳米结构体系的激子和光学性质,与实验数据吻合良好。已经研究了用于自旋电子学的铁磁自组装GaN纳米结构的磁性和结构性质。在相对较低的温度下将过渡金属(TM; Mn或Fe)掺入GaN纳米结构中,并在室温下观察到GaN:TM纳米结构的铁磁行为。此外,原子力显微镜测量显示,TMs影响了这些纳米结构的表面形态。少量的TM掺入影响了岛尺寸的减小和成核,增强了GaN:TM纳米结构中的量子约束以及铁磁性。增大岛密度后,减小了岛,从而改善了磁性能

著录项

  • 作者

    Kang, Hun.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 192 p.
  • 总页数 192
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号