首页> 外文学位 >Intrinsic plasticity in CA1 pyramidal neurons: Role of calcium(2+)- and sodium(+)-activated potassium currents in aging and Alzheimer's disease.
【24h】

Intrinsic plasticity in CA1 pyramidal neurons: Role of calcium(2+)- and sodium(+)-activated potassium currents in aging and Alzheimer's disease.

机译:CA1锥体神经元的内在可塑性:钙(2+)和钠(+)激活的钾电流在衰老和阿尔茨海默氏病中的作用。

获取原文
获取原文并翻译 | 示例

摘要

Behavioral plasticity is critical for survival and reflects the malleability of the central nervous system in response to ever changing environmental demands. Studies from human patients with lesions of the hippocampus demonstrate its critical role in the formation of conscious (declarative) memories. Combinations of biophysical, anatomical and molecular assays have been used to identify cellular alterations that occur during or after learning tasks in animal models. Two mechanisms of information storage - changes in synaptic efficacy and intrinsic neuronal excitability - have been observed in hippocampal neurons from animals trained on associative learning tasks. Studies from our laboratory and others demonstrate that a reduction in intrinsic excitability of neurons in the hippocampus contribute to learning and memory deficits associated with aging. However, the pathological consequence of Alzheimer's disease (AD) on neuronal excitability has gone mostly unexplored. Therefore, the present thesis explores methods to expedite studies of learning-related intrinsic plasticity and applies these findings to a mouse model of AD. Specifically, we investigate the effects of varying neuronal activity-patterns and different intracellular anions on the post-burst afterhyperpolarization (AHP), an index of neuronal excitability. Additionally, we examine the effects of the rapid and emotionally-based associative learning paradigm, trace-fear conditioning, on the AHP of CA1 pyramidal neurons. The AHP is inversely related to excitability; therefore, we hypothesize that the acquisition of trace-fear will result in reduction of the AHP and concomitant increase in neuronal firing rate. Finally, we characterize the behavioral, biophysical and pathological consequences of AD using a transgenic mouse that expresses five familial AD mutations. The findings detailed in this thesis first describe a model of "learning"-related AHP plasticity in vitro, as well as outlining critical methodological considerations for the study of AHP plasticity in whole-cell neuron recordings. Second, we demonstrate a learning-related reduction in the Ca2+-dependent AHP following trace-fear conditioning. Third, this work provides insight into mechanisms underlying learning and memory impairments in a mouse model of AD. We provide a novel target for regulation of neuronal excitability in hippocampal neurons that may be useful in the design of cognitive enhancers for the elderly and patients with AD.
机译:行为可塑性对于生存至关重要,并反映了中枢神经系统对不断变化的环境需求的可塑性。对患有海马体损伤的人类患者的研究表明,它在有意识(陈述性)记忆的形成中起关键作用。生物物理,解剖学和分子测定法的组合已用于鉴定在动物模型中学习任务期间或之后发生的细胞改变。在接受过相关学习任务训练的动物的海马神经元中,观察到了两种信息存储机制-突触效力和内在神经元兴奋性改变。来自我们实验室和其他实验室的研究表明,海马神经元固有的兴奋性降低会导致与衰老相关的学习和记忆缺陷。但是,阿尔茨海默氏病(AD)对神经元兴奋性的病理后果尚未得到充分探讨。因此,本论文探索了加速学习相关的内在可塑性研究的方法,并将这些发现应用于AD的小鼠模型。具体来说,我们调查了不同的神经元活动模式和不同的细胞内阴离子对爆发后超极化(AHP)(神经元兴奋性的指标)的影响。此外,我们研究了基于快速和基于情感的联想学习范例,恐惧恐惧调节对CA1锥体神经元AHP的影响。 AHP与兴奋性成反比。因此,我们假设获得微量恐惧会导致AHP降低并伴随神经元放电速率的增加。最后,我们使用表达五个家族性AD突变的转基因小鼠来表征AD的行为,生物物理和病理后果。本论文中详细介绍的发现首先描述了体外“学习”相关AHP可塑性的模型,并概述了在全细胞神经元记录中研究AHP可塑性的关键方法学考虑。其次,我们证明了在跟踪恐惧条件下,与学习相关的Ca2 +依赖的AHP降低。第三,这项工作深入了解了AD小鼠模型中学习和记忆障碍的潜在机制。我们提供了调节海马神经元神经元兴奋性的新目标,可能对设计老年人和AD患者的认知增强剂有用。

著录项

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Biology Neuroscience.; Health Sciences Pathology.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 291 p.
  • 总页数 291
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 神经科学;病理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号