首页> 外文学位 >Nanostructured semiconductors for thermoelectric energy conversion: Synthesis and transport properties.
【24h】

Nanostructured semiconductors for thermoelectric energy conversion: Synthesis and transport properties.

机译:用于热电能量转换的纳米结构半导体:合成和传输性质。

获取原文
获取原文并翻译 | 示例

摘要

Increasing energy demands and decreasing natural energy resources have sparked search for alternative clean and renewable energy sources. For instance, currently there is a tremendous interest in thermoelectric and photovoltaic solar energy production technologies. Half-Heusler (HH) alloys are among the most popular material systems presently under widespread investigations for high temperature thermoelectric energy conversion. Approaches to increase the thermoelectric figure of merit (ZT) of HH range from (1) chemical substitution of atoms with different masses within the same atomic position in the crystal structure to optimize carrier concentration and enhance phonon scattering via mass fluctuation and (2) embedding secondary phonon scattering centers in the matrix (nanostructuring) to further reduce thermal conductivity.;This work focuses on three material systems. The first part describes the synthesis and properties (thermal conductivity, electrical conductivity, magnetic) of various oxide nanostructures (NiO, Co3O4) which were subsequently used as inclusion phases in a HH matrix to reduce the thermal conductivity. Detailed reviews of the past efforts along with the current effort to optimize synthetic routes are presented. The effects of the synthesis conditions on the thermoelectric properties of compacted pellets of NiO and Co3O4 are also discussed. The second part of the work discusses the development of synthetic strategies for the fabrication of p-type and n-type bulk nanostructured thermoelectric materials made of a half-Heusler matrix based on (Ti,Hf)CoSb, containing nanostructures with full-Heusler (FH) compositions and structures coherently embedded inside the half-Heusler matrix. The role of the nanostructures in the regulation of phonon and charge carrier transports within the half-heusler matrix is extensively discussed by combining transport data and electron microscopy images. It was found that the FH nanoinclusions form staggered heterojunctions with a valence band (VB) offset energy at the HH/FH phase boundaries. The resulting energy barrier discriminates existing holes with respect to their energy by trapping low energy holes, while promoting the transport of high energy holes through the VB of the FH-quantum dots. This "carrier culling" results in surprisingly large increase in the mobility and the effective mass of high energy holes contributing to electronic conduction. The simultaneous reduction in the density and the increase in the effective mass of holes resulted in large enhancements of the thermopower, whereas the increase in the mobility minimizes the drop in the electrical conductivity. In the third part, the application of this concept of nanostructuring on the Copper Selenide material system is described. Various synthetic approaches such as liquid assisted solid-state reaction and mechanical alloying are utilized for the fabrication of copper selenide compositions. We found that the mechanical alloying clearly decreases the thermal conductivity of the composition as well increases the Seebeck due to decrease in carrier concentrations.
机译:能源需求的增加和自然能源的减少已经引发了寻找替代性清洁和可再生能源的需求。例如,当前对热电和光伏太阳能生产技术有极大的兴趣。半霍斯勒(HH)合金是目前受到高温热电能量转换的广泛研究的最受欢迎的材料系统之一。增加HH的热电品质因数(ZT)的方法包括(1)晶体结构中相同原子位置内具有不同质量的原子的化学取代,以优化载流子浓度并通过质量波动和(2)嵌入来增强声子散射次声子散射中心在基体中(纳米结构化),以进一步降低热导率。这项工作集中在三种材料系统上。第一部分描述了各种氧化物纳米结构(NiO,Co3O4)的合成和性质(导热性,导电性,磁性),这些氧化物随后被用作HH基质中的包裹相以降低导热性。介绍了过去的努力以及当前为优化合成路线所做的努力的详细评论。还讨论了合成条件对压实的NiO和Co3O4颗粒热电性能的影响。工作的第二部分讨论了合成策略的发展,该策略用于制造由基于(Ti,Hf)CoSb的含半Heusler基质的半Heusler基质制成的p型和n型块体纳米结构热电材料,其中包含具有全Heusler( FH)组成和结构连贯地嵌入在半Heusler矩阵内部。通过结合传输数据和电子显微镜图像,广泛讨论了纳米结构在调节半霍斯勒矩阵内声子和电荷载流子中的作用。发现FH纳米夹杂物在HH / FH相边界处形成具有价带(VB)偏移能量的交错异质结。所得的势垒通过捕获低能空穴来区分现有空穴相对于它们的能量,同时促进高能空穴通过FH量子点的VB传输。这种“载流子剔除”导致迁移率和有助于电子传导的高能空穴的有效质量显着增加。密度的同时降低和空穴有效质量的增加导致热功率的大幅提高,而迁移率的提高则使电导率的下降最小化。在第三部分中,描述了纳米结构化概念在硒化铜材料系统上的应用。各种合成方法,例如液体辅助的固态反应和机械合金化,都用于制造硒化铜组合物。我们发现,由于载流子浓度的降低,机械合金化明显降低了组合物的热导率,也增加了塞贝克。

著录项

  • 作者

    Sahoo, Pranati.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Materials Science.;Nanoscience.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 176 p.
  • 总页数 176
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号