首页> 外文学位 >First Principles Investigations of Technologically and Environmentally Important Nano-structured Materials and Devices.
【24h】

First Principles Investigations of Technologically and Environmentally Important Nano-structured Materials and Devices.

机译:对技术和环境重要的纳米结构材料和装置的第一原理研究。

获取原文
获取原文并翻译 | 示例

摘要

In the course of my PhD I have worked on a broad range of problems using simulations from first principles: from catalysis and chemical reactions at surfaces and on nanostructures, characterization of carbon-based systems and devices, and surface and interface physics. My research activities focused on the application of ab-initio electronic structure techniques to the theoretical study of important aspects of the physics and chemistry of materials for energy and environmental applications and nano-electronic devices. A common theme of my research is the computational study of chemical reactions of environmentally important molecules (CO, CO2) using high performance simulations. In particular, my principal aim was to design novel nano-structured functional catalytic surfaces and interfaces for environmentally relevant remediation and recycling reactions, with particular attention to the management of carbon dioxide.;We have studied the carbon-mediated partial sequestration and selective oxidation of carbon monoxide (CO), both in the presence and absence of hydrogen, on graphitic edges. Using first-principles calculations we have studied several reactions of CO with carbon nanostructures, where the active sites can be regenerated by the deposition of carbon decomposed from the reactant (CO) to make the reactions self-sustained. Using statistical mechanics, we have also studied the conditions under which the conversion of CO to graphene and carbon dioxide is thermodynamically favorable, both in the presence and in the absence of hydrogen. These results are a first step toward the development of processes for the carbon-mediated partial sequestration and selective oxidation of CO in a hydrogen atmosphere.;We have elucidated the atomic scale mechanisms of activation and reduction of carbon dioxide on specifically designed catalytic surfaces via the rational manipulation of the surface properties that can be achieved by combining transition metal thin films on oxide substrates. We have analyzed the mechanisms of the molecular reactions on the class of catalytic surfaces so designed in an effort to optimize materials parameters in the search of optimal catalytic materials. All these studies are likely to bring new perspectives and substantial advancement in the field of high-performance simulations in catalysis and the characterization of nanostructures for energy and environmental applications.;Moving to novel materials for electronics applications, I have studied the structural and vibrational properties of mono and bi-layer graphene. I have characterized the lattice thermal conductivity of ideal monolayer and bi-layer graphene, demonstrating that their behavior is similar to that observed in graphite and indicating that the intra-layer coupling does not affect significantly the thermal conductance. I have also calculated the electron-phonon interaction in monolayer graphene and obtained electron scattering rates associated with all phonon modes and the intrinsic resistivity/mobility of monolayer graphene is estimated as a function of temperature.;On another project, I have worked on ab initio molecular dynamic studies of novel Phase Change Materials (PCM) for memory and 3D-integration.;We characterized high-temperature, sodium | nickel chloride, rechargeable batteries. These batteries are under consideration for hybrid drive systems in transportation applications. As part of our activities to improve performance and reliability of these batteries, we developed an engineering transport model of the component electrochemical cell. To support that model, we have proposed a reaction kinetics expression for the REDOX (reduction-oxidation) reaction at the porous positive electrode. We validate the kinetics expression with electrochemical measurements.;A methodology based on the transistor body effect is used to estimate inversion oxide thicknesses (Tinv) in high-kappa/metal gate, undoped, ultra-thin body SOI FINFETs. The extracted Tinvs are compared to independent capacitance voltage (CV) measurements.
机译:在攻读博士学位的过程中,我使用第一性原理的模拟研究了各种各样的问题:表面和纳米结构上的催化和化学反应,碳基系统和装置的表征以及表面和界面物理。我的研究活动集中于从头开始电子结构技术在能源和环境应用材料以及纳米电子设备的物理和化学重要方面的理论研究中的应用。我研究的一个共同主题是使用高性能模拟对环境重要分子(CO,CO2)的化学反应进行计算研究。特别是,我的主要目的是为环境相关的修复和循环反应设计新颖的纳米结构功能催化表面和界面,并特别关注二氧化碳的管理。;我们研究了碳介导的部分螯合和选择性氧化一氧化碳(CO),无论有无氢气,在石墨边缘。使用第一性原理计算,我们研究了CO与碳纳米结构的几种反应,其中可以通过沉积从反应物(CO)分解的碳来再生活性位,从而使反应自持。使用统计力学,我们还研究了在有氢和无氢条件下,CO转化为石墨烯和二氧化碳的热力学条件。这些结果是开发在氢气气氛中碳介导的部分螯合和选择性氧化CO的过程的第一步。我们已经阐明了通过专门设计的催化表面活化和还原二氧化碳的原子尺度机理。合理控制表面性质,可以通过在氧化物基底上结合过渡金属薄膜来实现。我们已经分析了这样设计的催化表面类别上的分子反应机理,旨在优化材料参数以寻找最佳的催化材料。所有这些研究都可能为高性能模拟催化和表征用于能源和环境应用的纳米结构带来新的观点和实质性进展。;在研究电子应用的新型材料时,我研究了结构和振动特性单层和双层石墨烯。我已经对理想的单层和双层石墨烯的晶格热导率进行了表征,表明它们的行为与在石墨中观察到的行为相似,并表明层内耦合不会显着影响热导率。我还计算了单层石墨烯中的电子-声子相互作用,并获得了与所有声子模式相关的电子散射速率,并估计了单层石墨烯的固有电阻率/迁移率随温度的变化。;在另一个项目中,我从头开始进行了研究。用于存储和3D集成的新型相变材料(PCM)的分子动力学研究。氯化镍,可充电电池。这些电池正在考虑用于运输应用中的混合驱动系统。作为改善这些电池性能和可靠性的活动的一部分,我们开发了组件电化学电池的工程运输模型。为了支持该模型,我们提出了多孔正电极上REDOX(还原-氧化)反应的反应动力学表达式。我们用电化学测量验证了动力学表达式。基于晶体管体效应的方法被用于估算高kappa /金属栅极,未掺杂的超薄体SOI FINFET中的反型氧化物厚度(Tinv)。将提取的Tinv与独立的电容电压(CV)测量值进行比较。

著录项

  • 作者

    Paul, Sujata.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Physics Condensed Matter.;Nanotechnology.;Energy.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 280 p.
  • 总页数 280
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号