首页> 外文学位 >Structure and electronic transport properties of nanometer-scale silicon -on -insulator (SOI) membranes.
【24h】

Structure and electronic transport properties of nanometer-scale silicon -on -insulator (SOI) membranes.

机译:纳米级绝缘体上硅(SOI)膜的结构和电子传输性能。

获取原文
获取原文并翻译 | 示例

摘要

Use of silicon-on-insulator (SOI), a thin single-crystal silicon layer on silicon-dioxide, is already pervasive in microelectronics and nanoelectromechanical systems. SOI promises, in fact, to become the platform for future high-speed electronics, as well as for a range of sensor technologies. When the Si layer is very thin, the assumption of an effectively infinite number of atoms determining its physical properties no longer applies, and unique electronic, structural, and thermodynamic phenomena arise.;SOI provides a potential new paradigm for surface studies, as these thin membranes become almost "all surface". For example, novel electronic properties emerge with decreasing membrane thickness, as surfaces and interfaces dominate bulk properties. We have investigated the conductivity of very thin (10nm) Si membranes bounded by one or two Si-SiO2 interfaces. Below a certain thickness, free carriers in the membrane will be completely trapped by the Si/SiO2 interface states. For a typical doping level of 1015 cm-3, the depletion thickness is of the order of 100 nm; in other words, a thin Si membrane bounded by two oxide layers will act like intrinsic Si. Using the van der Pauw method we have demonstrated that the conductivity of nanometer-scale SOI is vanishingly small. Therefore scanning tunneling microscopy (STM) on thin membranes should be impossible. On the contrary, we successfully image 10 nm thick Si, when the top native oxide is removed and a clean reconstructed Si (001) surface exposed. We show that electronic conduction in a thin Si membrane is determined not by its "bulk" dopants but by the thermal excitation at 300K of Si valence band charges to the surface band. The bulk dopant concentration is virtually irrelevant for electronic properties of Si nanomembranes. Conductivity in the membrane can be tailored by modifying the surface chemistry. We predict that both electrons and holes can be thermally generated, depending on the exact positions of the HOMO and LUMO bands, relative to the Si nanomembrane conduction and valence bands edges, of molecules adsorbed on the surface of Si. The addition of such layers may provide a practical approach to manufacture nanoscale sensors with high sensitivity and reliability based on electronic readout.;Beyond the novel electronic transport properties, nanometer-scale SOI shows rich thermal agglomeration phenomena. As the Si template layer thickness in SOI is reduced to tens of nanometers, it becomes thermally unstable, decomposing into well ordered silicon islands at high temperatures. (Abstract shortened by UMI.).
机译:绝缘体上硅(SOI)是一种在二氧化硅上的薄单晶硅层,在微电子和纳米机电系统中已经广泛使用。实际上,SOI承诺将成为未来高速电子设备以及一系列传感器技术的平台。当Si层非常薄时,不再适用确定其物理性质的有效无数原子的假设,并且出现了独特的电子,结构和热力学现象。; SOI为表面研究提供了潜在的新范例,因为这些层很薄膜几乎变成“所有表面”。例如,随着表面和界面主导整体性能,随着膜厚度的减小,出现了新颖的电子性能。我们研究了由一个或两个Si-SiO2界面界定的非常薄(10nm)的Si膜的电导率。低于一定厚度,膜中的自由载流子将被Si / SiO2界面态完全俘获。对于1015 cm-3的典型掺杂水平,耗尽层厚度约为100 nm;换句话说,由两个氧化物层限制的薄Si膜将像本征Si一样起作用。使用范德堡方法,我们已经证明了纳米级SOI的电导率几乎消失了。因此,不可能在薄膜上进行扫描隧道显微镜(STM)。相反,当去除顶部天然氧化物并暴露出干净的重建Si(001)表面时,我们成功地成像了10 nm厚的Si。我们表明,薄的Si膜中的电子传导不是由其“体”掺杂剂决定的,而是由在300K的Si价带电荷到表面带的热激发决定的。体掺杂剂浓度实际上与Si纳米膜的电子性质无关。膜中的电导率可以通过改变表面化学性质来调整。我们预测,取决于吸附在Si表面的分子的HOMO和LUMO能带相对于Si纳米膜导带和价带边缘的确切位置,电子和空穴都可以被热产生。此类层的添加可为基于电子读出的具有高灵敏度和可靠性的纳米级传感器的制造提供实用的方法。除了新颖的电子传输特性,纳米级SOI还显示出丰富的热团聚现象。随着SOI中的Si模板层厚度减小到几十纳米,它变得热不稳定,在高温下分解为有序的硅岛。 (摘要由UMI缩短。)。

著录项

  • 作者

    Zhang, Pengpeng.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 154 p.
  • 总页数 154
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号