首页> 外文学位 >Integration and characterization of silicon nanowire field effect devices.
【24h】

Integration and characterization of silicon nanowire field effect devices.

机译:硅纳米线场效应器件的集成和表征。

获取原文
获取原文并翻译 | 示例

摘要

The ability to engineer materials at the nanoscale utilizing a combination of controlled nanomaterial synthesis and self-assembly methods offers the potential to create new electronic devices with improved performance and functionality. Semiconductor nanowires (NWs) provide an ability to utilize the fundamental electronic building blocks that have been developed over a half-century of semiconductor technology and flexibility to integrate a wide choice of materials on a silicon platform. Moreover, semiconductor NWs could be used as an excellent model system for answering fundamental questions related to semiconductor device process integration and electrical transport at the nanoscale. In this thesis, my work on integration and characterization of silicon nanowire (SiNW) field effect (FET) devices is presented. This work provides a basis for understanding process integration and electrical transport in ultra-scaled devices.;First, we describe the synthesis of SiNWs using an Au-catalyzed vapor-liquid-solid (VLS) growth technique. Transmission electron microscopy (TEM) studies indicate that the SiNWs have single crystal cores that are sheathed with a 2--3 nm thin amorphous native oxide. We developed a general integration process to electrically address individual SiNWs in a global-back-gated test structure with four top-side electrodes. The electrical measurement results of four-point resistance and gate-dependent conductance demonstrate that trimethylboron and phosphine can be used as a source of boron and phosphorus for in-situ p- and n-type doping of SiNWs during VLS growth, respectively.;Second, we utilized thermal oxidation of SiNWs to form Si core/SiO 2 shell NW for fabricating top-gated SiNW FET devices. Structural characterization on thermally-oxidized SiNWs shows that the interface between the Si core and SiO2 shell is smooth and the SiO2 shell is uniform along the length of the NW. The field effect measurements show that thermally-grown SiO2 shell is suitable for use as the gate dielectric in the top-gated SiNW FET device structure, which has better device properties and stronger gate modulation than the global-back-gated test structure. Furthermore, the large hysteresis commonly observed in the subthreshold properties of the global-back-gated test structure is significantly suppressed in the top-gated FET structure. Both p- and n-channel top-gated SiNW FET devices were demonstrated, which facilitates fabrication of complementary SiNW FETs.;Third, we successfully synthesized axially-doped n+-p --n+ SiNWs by sequential introduction of n- and p-type dopant gases during VLS. TEM studies show that the length of each segment is well controlled and the transition between n+ and p - is sharp. The characteristics of FETs fabricated using these SiNWs resemble conventional n-channel MOSFETs, which indicates inversion-mode operation with dominant electron transport. Control samples with different S/D configurations fabricated using a global-back-gated FET structure confirm that there is no deleterious n-type overcoating along the p- segment. These results demonstrate the potential to use SiNWs for future nanoelectronic device application or as a model system by engineering the doping profile during VLS growth and taking advantage of various gating structures.
机译:利用受控的纳米材料合成和自组装方法的组合在纳米级上对材料进行工程设计的能力提供了创建具有改进的性能和功能的新电子设备的潜力。半导体纳米线(NW)提供了利用已经开发了半个多世纪的半导体技术的基本电子构件的能力,并具有灵活性,可以在硅平台上集成多种材料。此外,半导体纳米线可以用作回答与纳米级半导体器件工艺集成和电传输有关的基本问题的优秀模型系统。本文提出了我对硅纳米线(SiNW)场效应(FET)器件的集成和表征的工作。这项工作为理解超大规模器件中的过程集成和电传输提供了基础。首先,我们描述了使用Au催化的气液固(VLS)生长技术合成SiNWs。透射电子显微镜(TEM)研究表明,SiNW具有单晶纤芯,并包覆有2--3 nm的薄非晶态天然氧化物。我们开发了一种通用集成工艺,以在具有四个顶侧电极的全局背栅测试结构中以电方式解决单个SiNW。四点电阻和取决于栅极的电导率的电学测量结果表明,三甲基硼和磷化氢可以分别用作在VLS生长过程中原位p型和n型掺杂SiNW的硼和磷源。 ,我们利用SiNW的热氧化来形成Si核/ SiO 2壳NW,以制造顶部栅极的SiNW FET器件。热氧化SiNWs的结构表征表明,Si核与SiO2壳之间的界面很光滑,而SiO2壳沿NW的长度方向是均匀的。场效应测量表明,热生长的SiO2壳适合用作顶部栅极SiNW FET器件结构中的栅极电介质,与全局背栅极测试结构相比,它具有更好的器件性能和更强的栅极调制性能。此外,在顶部栅极FET结构中,通常抑制了全局背栅极测试结构的亚阈值特性中通常观察到的大磁滞。展示了p沟道和n沟道顶部栅极SiNW FET器件,这有助于制造互补的SiNW FET。第三,我们通过顺序引入n型和p型成功地合成了轴向掺杂的n + -p --n + SiNWs VLS期间掺杂气体。 TEM研究表明,每个链段的长度都得到了很好的控制,并且n +和p-之间的过渡非常明显。使用这些SiNW制作的FET的特性类似于常规的n沟道MOSFET,这表明具有主要电子传输的反转模式操作。使用全局背栅FET结构制造的具有不同S / D配置的对照样品证实,沿p段没有有害的n型外涂层。这些结果证明了通过在VLS生长期间设计掺杂分布并利用各种选通结构来将SiNW用于未来纳米电子器件应用或作为模型系统的潜力。

著录项

  • 作者

    Wang, Yanfeng.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 119 p.
  • 总页数 119
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号