首页> 外文学位 >Manipulation and Characterization of Geometry-dependent Nanoscale Thermophysics in Nanoparticle Enhanced Phase Change Thermal Energy Storage Materials
【24h】

Manipulation and Characterization of Geometry-dependent Nanoscale Thermophysics in Nanoparticle Enhanced Phase Change Thermal Energy Storage Materials

机译:纳米颗粒增强相变储热材料中依赖几何的纳米级热物理的操纵和表征

获取原文
获取原文并翻译 | 示例

摘要

Reductions in the size of materials down to the nanoscale have led to the discovery of nanoparticles with exceptionally unique optical, mechanical, electrical and thermal properties. As a result of their extraordinarily high thermal conductivities, carbon-based nanoparticles are projected to become integral components in a wide variety of thermal management systems and devices in the future, including their incorporation into thermal interface materials, microchannel heat sinks and waste heat recovery devices. Despite nearly two decades of intense research in this area, however, carbon-based nanoparticles have not yet been widely adopted in these systems. One major impediment to their integration in these applications is the high degree of phonon boundary scattering that occurs across individual nanoparticle interfaces, particularly when they come into contact with an amorphous material. The physical phenomena responsible for this include: 1) mismatches in the vibrational spectra of the nanoparticle and the surrounding amorphous material, 2) a low adhesion energy (or bonding strength) at the interface and 3) differently sized constrictions that are formed at contacting junctions. Of interest in this work is the last of these, whose magnitude effect on thermal transport in bulk materials is not well known. To this end, the effect of nanoparticle contact area on thermal transport within a bulk paraffin phase change material is quantified and reported for a variety of nanoparticle types. Paraffins are amorphous in nature and are common materials used for the storage of thermal energy. The effect of nanoparticle inclusions on both the micro-scale and macro-scale heat conduction phenomena within paraffin are quantified as a function of nanofillers geometry and type. The results are expected to aid in the analysis and design of next-generation nanocomposites and thermal energy storage materials.
机译:将材料尺寸减小至纳米级已导致发现具有异常独特的光学,机械,电和热性能的纳米颗粒。由于其极高的热导率,预计碳基纳米颗粒将在未来成为各种热管理系统和设备中不可或缺的组成部分,包括将其结合到热界面材料,微通道散热器和废热回收设备中。尽管在该领域进行了近二十年的深入研究,但是,碳基纳米颗粒尚未在这些系统中广泛采用。它们在这些应用中的集成的主要障碍是跨越各个纳米粒子界面的声子边界散射程度很高,特别是当它们与无定形材料接触时。造成这种现象的物理现象包括:1)纳米粒子与周围无定形材料的振动光谱不匹配; 2)界面处的粘合力低(或键合强度)低; 3)接触接点处形成不同尺寸的缩颈。这项工作中令人感兴趣的是这些工作中的最后一个,其对散装材料中热传输的大小影响尚不为人所知。为此,量化并报道了对于多种纳米颗粒类型的纳米颗粒接触面积对本体石蜡相变材料内的热传递的影响。石蜡本质上是无定形的,是用于存储热能的常用材料。纳米颗粒夹杂物对石蜡内部的微观和宏观热传导现象的影响被量化为纳米填料几何形状和类型的函数。预期结果将有助于下一代纳米复合材料和储热材料的分析和设计。

著录项

  • 作者

    Warzoha, Ronald Joseph.;

  • 作者单位

    Villanova University.;

  • 授予单位 Villanova University.;
  • 学科 Mechanical engineering.;Materials science.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 257 p.
  • 总页数 257
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号