首页> 外文学位 >Error estimation for fourth order partial differential equations.
【24h】

Error estimation for fourth order partial differential equations.

机译:四阶偏微分方程的误差估计。

获取原文
获取原文并翻译 | 示例

摘要

The goal of this dissertation is to find a posteriori error estimates for fourth order two-point boundary value problems based on Hermite-Lobatto interpolation error estimates.; In this dissertation, the motivation for investigating fourth order partial differential equations is outlined first. This is necessary because solving these partial differential equations has been much less examined compared to the extensive studies that have been done for the second order partial differential equations. A brief overview is also provided on what has been achieved in the numerical analysis of fourth order partial differential equations.; Next the finite element theory for fourth order partial differential equations is introduced. The discussions are limited to linear problems with homogeneous boundary conditions. The hierarchic approach is applied for building a set of Hermite-Lobatto basis functions.; Interpolation error estimates are obtained from an extension of the error formula for the Hermite-Lobatto interpolating polynomial in the case of symmetrically-spaced interpolation points. From this formula pointwise and H 2 seminorm a priori estimates of the interpolation error are derived. The interpolant in conjunction with the a priori estimates is used to obtain asymptotically exact a posteriori error estimates of the interpolation error. These a posteriori error estimates are extended to linear two-point boundary problems. Computational results demonstrate the convergence of a posteriori error estimates and their effectiveness.; The most important properties of the Hermite-Lobatto polynomials have been investigated. Some of them provide tools to assemble the finite element algorithm such as the recurrence relationship property. Others guarantee numerical stability such as the orthogonality property.; Future research to be done by the author is discussed.
机译:本文的目的是基于Hermite-Lobatto插值误差估计找到四阶两点边值问题的后验误差估计。本文首先概述了研究四阶偏微分方程的动机。这是必要的,因为与对二阶偏微分方程进行的广泛研究相比,解决这些偏微分方程的研究少得多。还简要概述了四阶偏微分方程的数值分析。接下来介绍四阶偏微分方程的有限元理论。讨论仅限于具有齐次边界条件的线性问题。分层方法用于构建一组Hermite-Lobatto基函数。在对称间距的插值点的情况下,可从Hermite-Lobatto插值多项式的误差公式的扩展获得插值误差估计。从该公式逐点和H 2半范数,可以得出插值误差的先验估计。将该插值与先验估计一起用于获得插值误差的渐近精确后验误差估计。这些后验误差估计扩展到线性两点边界问题。计算结果证明了后验误差估计的收敛性及其有效性。研究了Hermite-Lobatto多项式的最重要性质。其中一些工具提供了组装有限元算法的工具,例如递归关系属性。其他保证数值稳定性,例如正交性。讨论了作者将来要做的研究。

著录项

  • 作者

    Rangelova, Marina.;

  • 作者单位

    Southern Methodist University.;

  • 授予单位 Southern Methodist University.;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 134 p.
  • 总页数 134
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 数学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号