首页> 外文学位 >Identifying and investigating metabolic pathways activated in high-producing California poppy suspension cultures.
【24h】

Identifying and investigating metabolic pathways activated in high-producing California poppy suspension cultures.

机译:鉴定和研究在高产加州罂粟悬浮培养物中激活的代谢途径。

获取原文
获取原文并翻译 | 示例

摘要

Plant cell culture offers an alternative production system capable of providing consistent, high yields of pharmaceutical compounds. Currently, 9 pharmaceutical compounds have been produced through plant cell culture [1]. However, further increases in productivity for other compounds from plant cell cultures will require a greater understanding of metabolic pathways which limit production. Proteins and pathways with changes in abundance in high-producing cell lines represent potential targets for further increases in production. In this thesis, Eschscholzia californica cultures which produce benzophenanthridine alkaloids, including the anti-microbial and anticancer drug sanguinarine, were used as a model system to study metabolic bottlenecks using proteomics.;Enhancements in BPA production was explored using elicitation, in situ product extraction, and medium composition. Cultures treated with a purified yeast elicitor (PYE) enhanced BPA production to greater than a 20-fold. In situ extraction combined with PYE-treatment increased production 63-fold, i.e. up to 85 mg BPAs / g dry weight. Medium optimization (hormones, sugar, nitrogen, and phosphate) did not increase production in elicited cultures.;A proteomic comparison of unelicited and PYE-elicited cultures was performed to assess differences in global metabolism associated with enhanced BPA production. Approximately 650 proteins were identified using a liquid chromatography / mass spectrometric method. Three proteins related to (S)-adenosylmethionine (SAM) biosynthesis and metabolism were significantly induced in elicited cultures. SAM is a universal methyl donor in biological reactions including 6 steps in sanguinarine biosynthesis. The results suggest a coordination between primary metabolic pathways and increased BPA production.;The role of the SAM biosynthetic pathway in supporting enhanced BPA synthesis was investigated further by adding methionine, ethylene, and the ethylene biosynthesis inhibitor cobalt chloride to E. californica suspension cultures. Methionine did not affect production in elicited cultures suggesting that methionine is not limiting BPA production. Amino acid analysis of culture media from elicited cultures reflected increased methionine biosynthesis with elicitation. Both ethephon (soluble ethylene) and cobalt chloride did not affect production suggesting that ethylene is not required for elicitor-induced BPA production.;Recommendations include enhancing production using cyclodextrin for in situ extraction, improved protein identification using fractionation by differential centrifugation, and investigation of the role of DNA methylation in supporting increased production. These proposed experiments will provide insight into pathways which can be manipulated by genetic engineering to enhance production.
机译:植物细胞培养提供了一种替代的生产系统,该系统能够提供一致的高产率的药物化合物。目前,通过植物细胞培养已经生产了9种药物化合物[1]。但是,要进一步提高植物细胞培养物中其他化合物的生产率,将需要对限制生产的代谢途径有更深入的了解。高产细胞系中蛋白质和丰度变化的途径代表了进一步提高产量的潜在目标。在本文中,以产生苯并菲啶生物碱(包括抗微生物和抗癌药血红蛋白碱)的加州大肠埃希氏菌培养物为模型系统,以研究蛋白质组学的代谢瓶颈。;通过诱因,原位产物提取,和中等组成。用纯化的酵母激发子(PYE)处理的培养物将BPA产量提高到20倍以上。原位萃取与PYE处理相结合可将产量提高63倍,即最高85 mg BPAs / g干重。培养基优化(激素,糖,氮和磷酸盐)不会增加诱导培养物中的产量。对未诱导培养物和PYE诱导培养物进行了蛋白质组学比较,以评估与BPA产生增加相关的整体代谢差异。使用液相色谱/质谱法鉴定出约650种蛋白质。在诱导培养物中显着诱导了与(S)-腺苷甲硫氨酸(SAM)生物合成和代谢相关的三种蛋白质。 SAM是生物反应中的通用甲基供体,包括血红碱生物合成中的6个步骤。结果表明主要代谢途径与BPA产生增加之间存在协调关系。通过在蛋黄大肠杆菌悬浮培养物中添加蛋氨酸,乙烯和乙烯生物合成抑制剂氯化钴,进一步研究了SAM生物合成途径在支持BPA合成方面的作用。蛋氨酸不影响诱导培养物中的生产,这表明蛋氨酸并不限制BPA的生产。来自诱导培养物的培养基的氨基酸分析反映了诱导引起的蛋氨酸生物合成增加。乙烯利(可溶性乙烯)和氯化钴均未影响生产,表明诱导剂诱导的BPA生产不需要乙烯。建议包括使用环糊精原位提取提高产量,通过差速离心分离法改进蛋白质鉴定以及研究DNA甲基化在增加产量中的作用。这些拟议的实验将提供对基因工程可以操纵的途径的认识,以提高产量。

著录项

  • 作者

    Oldham, John Thornton.;

  • 作者单位

    Northeastern University.;

  • 授予单位 Northeastern University.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 176 p.
  • 总页数 176
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:37:04

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号