首页> 外文学位 >Optical near-field effects for submicron patterning and plasmonic optical devices.
【24h】

Optical near-field effects for submicron patterning and plasmonic optical devices.

机译:亚微米图案化和等离激元光学器件的光学近场效应。

获取原文
获取原文并翻译 | 示例

摘要

Metallic films with narrow and deep subwavelength gratings or holes having a converging-diverging channel (CDC) can exhibit enhanced transmission resonances for wavelengths larger than the periodicity of the grating or hole. Using the finite element method, it is shown that by varying the gap size at the throat of a CDC, the spectral locations of the transmission resonance bands can be shifted close to each other and have high transmittance in a very narrow energy band. Additionally, the transmission of light can be influenced by the presence of the externally applied magnetic field H. The spectral locations of the transmission peak resonances depend on the magnitude and the direction of H. The transmission peaks have blue-shift with the increase in H.; A new multilayer thermal emitter has been analyzed in the visible wavelength range. The proposed emitter has large temporal and spatial coherence extending into the far field. The thermal emitter is made up of a cavity that is surrounded by a thin silver grating having a CDC on one side and a one-dimensional (1D) photonic crystal (PhC) on the other side. The large coherence length is achieved by making use of the coherence properties of the surface waves. Due to the nature of surface waves the new multilayer structure can attain the spectral and directional control of emission with only p-polarization. The resonance condition inside the cavity is extremely sensitive to the wavelength, which would then lead to high emission in a very narrow wavelength band.; In addition a new tunable plasmonic crystal (tPLC) was proposed, where the plasmonic or polaritonic mode of a metallic array can be combined with the photonic mode of a hole array in a dielectric slab for achieving negative refraction and still posses an extra degree of freedom for tuning the tPLC as a superlens to operate at different frequencies. The tunability of the single planar tPLC slab is demonstrated numerically for subwavelength imaging (FWHM 0.38lambda ∼ 0.42lambda) by just varying the fluid in the hole array, thereby enabling the realization of ultracompact tunable superlens and paving the way for a new class of lens.; An aggressive pursuit for decreasing the minimum feature size in high bandgap materials has lead to various challenges in nanofabrication. However, it is difficult to achieve critical dimensions at sub-wavelength scale using traditional optical lithography. A new technique to create submicron patterns on hard-to-machine materials like silicon carbide (SiC) and borosilicate glass with a laser beam is demonstrated. Here the principle of optical near-field enhancement between the spheres and substrate when irradiated by a laser beam has been used for obtaining the patterning.
机译:具有窄和深亚波长光栅或具有会聚发散通道(CDC)的孔的金属膜对于大于光栅或孔的周期性的波长,可以表现出增强的传输共振。使用有限元方法显示,通过改变CDC喉部的缝隙大小,可以使传输共振带的光谱位置彼此靠近,并在非常窄的能带中具有高透射率。此外,外部磁场H的存在会影响光的透射。透射峰共振的光谱位置取决于H的大小和方向。随着H的增加,透射峰会发生蓝移。 。;已经在可见光波长范围内分析了一种新型多层热辐射器。提出的发射器具有延伸到远场的大的时间和空间相干性。热发射器由一个空腔构成,该空腔被薄的银光栅围绕,该薄的银光栅的一侧具有CDC,另一侧具有一维(1D)光子晶体(PhC)。通过利用表面波的相干特性来实现大的相干长度。由于表面波的性质,新的多层结构仅通过p偏振即可实现发射的光谱和方向控制。腔体内的共振条件对波长极为敏感,这将导致在非常窄的波长带中产生高发射。另外,提出了一种新的可调谐等离激元晶体(tPLC),其中金属阵列的等离子或极化模式可以与介电平板中孔阵列的光子模式结合以实现负折射,并且仍然具有额外的自由度用于将tPLC调整为超透镜以在不同频率下运行。通过仅改变孔阵列中的流体,就可对亚波长成像(FWHM 0.38lambda〜0.42lambda)进行数值演示,证明单平面tPLC平板的可调性,从而实现超紧凑型可调超透镜的实现,并为新型透镜铺平了道路。 。;减小高带隙材料的最小特征尺寸的积极追求导致了纳米加工中的各种挑战。但是,使用传统的光刻技术很难在亚波长范围内达到关键尺寸。演示了一种利用激光束在难以加工的材料(例如碳化硅(SiC)和硼硅酸盐玻璃)上创建亚微米图案的新技术。在这里,当被激光束照射时,在球体和基板之间的光学近场增强的原理已经用于获得图案。

著录项

  • 作者

    Battula, Arvind Reddy.;

  • 作者单位

    The University of Texas at Austin.$bMechanical Engineering.;

  • 授予单位 The University of Texas at Austin.$bMechanical Engineering.;
  • 学科 Engineering Mechanical.; Physics Electricity and Magnetism.; Physics Optics.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 158 p.
  • 总页数 158
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;电磁学、电动力学;光学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号