首页> 外文学位 >Thermal-aware design and analysis techniques for integrated circuits and high-performance microprocessor systems.
【24h】

Thermal-aware design and analysis techniques for integrated circuits and high-performance microprocessor systems.

机译:用于集成电路和高性能微处理器系统的热感知设计和分析技术。

获取原文
获取原文并翻译 | 示例

摘要

Physical phenomena such as temperature and power have an increasingly important role in performance and reliability of modern process technologies. This trend will only strengthen with future generations. In this dissertation we present mechanisms for thermal management and power optimizations of integrated circuits.; We present three thermal aware high-level synthesis techniques for peak temperature reduction targeting ASIC design flow. Decisions made during high-level synthesis impact the activity of functional resources and their power consumption. Power consumed is dissipated as heat. The first approach consists of two constructive temperature-aware resource allocation and binding algorithms - temperature constrained resource minimization and resource constrained temperature minimization. The second technique is an iterative temperature aware binding algorithm, which evenly distributes activity across functional units. The third mechanism combines temperature-aware scheduling and binding based on feedback from post floorplan thermal simulation. Our techniques are effective in peak temperature reduction, and reducing leakage and total power consumption.; In order to maintain performance per Watt in microprocessors, there is a shift towards chip level multiprocessing paradigm. With such large-scale integration and increasing power densities Dynamic Thermal Management (DTM) continues to be a significant design effort to maintain performance and reliability. We present two mechanisms to perform real time frequency scaling as part of dynamic frequency and voltage scaling to assist DTM. The results show that our algorithm, by incorporating physical interaction of the cores, consistently succeeds in maximizing the operating frequency of the most critical core while successfully relieving the thermal emergency of the core. DTM techniques rely on accurate readings of on-die thermal sensors. Next, we present novel techniques for determining the optimal locations and allocations for thermal sensors to provide a high fidelity thermal profile of a complex microprocessor system. We show that our tool is able to create a sensor distribution for a given microprocessor architecture providing accurate thermal measurements.; Increased logic density and programmability of FPGAs cause high power dissipation and on-chip temperature. We present techniques for placement and minimization of sensors, which can then be mapped onto FPGA, post-fabrication for thermal monitoring and power driven netlist partitioning for realizing low power FPGAs.
机译:温度和功率等物理现象在现代工艺技术的性能和可靠性中起着越来越重要的作用。这种趋势只会在子孙后代得到加强。在本文中,我们提出了用于集成电路的热管理和功率优化的机制。我们针对目标ASIC设计流程提出了三种针对峰值温度降低的热敏性高级综合技术。在高级综合过程中做出的决定会影响功能资源的活动及其功耗。消耗的功率以热量的形式消散。第一种方法包括两个建设性的温度感知资源分配和绑定算法-温度受限的资源最小化和资源受限的温度最小化。第二种技术是迭代的温度感知绑定算法,该算法将活动平均分配到各个功能单元上。第三种机制基于后平面热仿真的反馈,将温度感知调度和绑定结合在一起。我们的技术可有效降低峰值温度,并减少泄漏和总功耗。为了在微处理器中保持每瓦特的性能,存在向芯片级多处理范例的转变。随着大规模集成和功率密度的提高,动态热管理(DTM)仍然是维持性能和可靠性的一项重大设计工作。我们提出两种机制来执行实时频率缩放,作为动态频率和电压缩放的一部分,以协助DTM。结果表明,我们的算法通过融合磁芯的物理相互作用,始终成功地最大化了最关键磁芯的工作频率,同时成功缓解了磁芯的热紧急情况。 DTM技术依赖于芯片上热传感器的准确读数。接下来,我们介绍用于确定热传感器的最佳位置和分配的新颖技术,以提供复杂微处理器系统的高保真度热分布。我们证明了我们的工具能够为给定的微处理器架构创建传感器分布,从而提供准确的热测量。 FPGA的逻辑密度和可编程性增加,会导致高功耗和片上温度。我们介绍了用于传感器放置和最小化的技术,这些技术可以映射到FPGA上,进行后制造以进行热监控,并通过电源驱动的网表分区来实现低功耗FPGA。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号