首页> 外文学位 >Spin interaction in semiconductors mediated by optical excitations.
【24h】

Spin interaction in semiconductors mediated by optical excitations.

机译:光激发介导的半导体中的自旋相互作用。

获取原文
获取原文并翻译 | 示例

摘要

Circumscribed to the field of condensed matter, this thesis aims to enhance our understanding of optically-induced indirect spin interactions in semiconductor structures, as well as to contribute to the development of solid state proposals for the emerging science of Quantum Information.;The theoretical formalism that is used throughout this thesis is discussed. This mathematical framework describes excitations of the semiconductor, light fields and localized spin states. It is shown how the Hamiltonian is derived from a microscopic model. This resulting Hamiltonian includes the: (i) Interaction between laser light and excitations of the semiconductor; (ii) Kinetic energies of excitations; (iii) interaction of photons and excitons that yield exciton polaritons; (iv) Spin interaction between localized centers and optical excitations in the semiconductor (excitons and/or exciton polaritons).;The formalism is first employed to analyze the spin indirect interaction mediated by excitons in semiconductors and extend the results of previous works in this subject. In contrast to previous works, a full analytical solution valid to all orders in the strength of the interaction between excitations and localized spins is found. New features arise from the non-perturbative solution. One important finding is that both ferromagnetic and anti-ferromagnetic indirect coupling can be achieved.;The indirect interaction for semiconductors embedded in a planar micro-cavity is then considered. This theory follows naturally as an extension of the one for bare semiconductors. The focus is now on different features that are predicted using perturbation theory in the coupling between polaritons and localized spins. It is shown that the indirect interaction presents two distinct regimes, depending on the separation between the localized spins. In each regime, the dominant interaction is of a different type: Ising or Heisenberg. Moreover, the range of the interaction for a semiconductor in a micro-cavity is found to be of longer range when compared to that of a bare semiconductor.;The knowledge gained through the aforementioned investigations opens new possibilities for applications to quantum information. First, a detailed analysis of optical quantum control in a system consisting of quantum dots grown on top of a quantum well is presented. It is shown how this system is a possible candidate for quantum computers. Then a discussion follows; describing how the findings on bare semiconductor and micro-cavity indirect interactions are a rich ground for implementations of quantum computing and other quantum information technologies.;This dissertation ends with comments on the future developments of the research presented here.
机译:围绕凝聚态领域,本论文旨在增进我们对半导体结构中光诱导的间接自旋相互作用的理解,并为新兴的量子信息科学的固态提案的发展做出贡献。讨论了整个论文中使用的方法。这个数学框架描述了半导体的激发,光场和局部自旋状态。它显示了哈密顿量是如何从微观模型导出的。由此产生的哈密顿量包括:(i)激光与半导体激发之间的相互作用; (ii)激发的动能; (iii)产生激子极化子的光子与激子的相互作用; (iv)半导体中局部中心与光激发(激子和/或激子极化子)之间的自旋相互作用;;形式主义首先用于分析由激子在半导体中介导的自旋间接相互作用,并扩展该主题先前的研究结果。与以前的工作相反,找到了一个完整的解析解,该解析解对激励和局部自旋之间相互作用强度的所有阶次都有效。非摄动解产生了新的特征。一个重要的发现是铁磁和反铁磁的间接耦合都可以实现。;然后考虑了嵌入在平面微腔中的半导体的间接相互作用。这一理论自然是对裸露半导体的一种延伸。现在的重点是在极化子和局部自旋之间的耦合中使用微扰理论预测的不同特征。结果表明,间接相互作用表现出两种不同的状态,这取决于局部自旋之间的间隔。在每个政权中,主要的相互作用是不同的类型:伊辛或海森堡。此外,发现与微半导体相比,微腔中半导体的相互作用范围更长。通过上述研究获得的知识为量子信息的应用提供了新的可能性。首先,对由在量子阱顶部生长的量子点组成的系统中的光学量子控制进行了详细分析。显示了该系统如何成为量子计算机的可能候选者。然后进行讨论。描述了裸露的半导体和微腔间接相互作用的发现如何为实现量子计算和其他量子信息技术奠定了坚实的基础。;本文最后对此处提出的研究的未来发展进行了评论。

著录项

  • 作者单位

    Michigan State University.;

  • 授予单位 Michigan State University.;
  • 学科 Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 108 p.
  • 总页数 108
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号