首页> 外文学位 >Ultrafast electronic dynamics in unipolar n-doped indium gallium arsenide/gallium arsenide self-assembled quantum dots.
【24h】

Ultrafast electronic dynamics in unipolar n-doped indium gallium arsenide/gallium arsenide self-assembled quantum dots.

机译:单极n掺杂砷化铟镓/砷化镓自组装量子点中的超快电子动力学。

获取原文
获取原文并翻译 | 示例

摘要

Photodetectors based on intraband infrared absorption in the quantum dots have demonstrated improved performance over its quantum well counterpart by lower dark current, relative temperature insensitivity, and its ability for normal incidence operation. Various scattering processes, including phonon emission/absorption and carrier-carrier scattering, are critical in understanding device operation on the fundamental level. In previous studies, our group has investigated carrier dynamics in both low- and high-density regime. Ultrafast electron-hole scattering and the predicted phonon bottleneck effect in intrinsic quantum dots have been observed. Further examination on electron dynamics in unipolar structures is presented in this thesis.; We used n-doped quantum dot in mid-infrared photodetector device structure to study the electron dynamics in unipolar structure. Differential transmission spectroscopy with mid-infrared intraband pump and optical interband probe was implemented to measure the electron dynamics directly without creating extra electron-hole pair, Electron relaxation after excitation was measured under various density and temperature conditions. Rapid capture into quantum dot within ∼ 10 ps was observed due to Auger-type electron-electron scattering. Intradot relaxation from the quantum dot excited state to the ground state was also observed on the time scale of 100 ps. With highly doped electron density in the structure, the inter-sublevel relaxation is dominated by Auger-type electron-electron scattering and the phonon bottleneck effect is circumvented. Nanosecond-scale recovery in larger-sized quantum dots was observed, not intrinsic to electron dynamics but due to band-bending and built-in voltage drift. An ensemble Monte Carlo simulation was also established to model the dynamics in quantum dots and in goad agreement with the experimental results.; We presented a comprehensive picture of electron dynamics in the unipolar quantum dot structure. Although the phonon bottleneck is circumvented with high doped electron density, relaxation processes in unipolar quantum dots have been measured with time scales longer than that of bipolar systems. The results explain the operation principles of the quantum dot infrared photodetector on a microscopic level and provide basic understanding for future applications and designs.
机译:在量子点中基于带内红外吸收的光电检测器通过降低暗电流,相对温度不敏感度以及法向入射操作的能力,已证明其性能优于量子阱。包括声子发射/吸收和载流子-载流子散射在内的各种散射过程对于从根本上理解器件的运行至关重要。在以前的研究中,我们小组研究了低密度和高密度条件下的载流子动力学。已经观察到超快电子-空穴散射和本征量子点中预测的声子瓶颈效应。本文对单极结构中的电子动力学进行了进一步的研究。我们在中红外光电探测器的结构中使用了n掺杂量子点来研究单极结构中的电子动力学。采用中红外带内泵和光学带间探针的差动透射光谱法直接测量电子动力学,而不产生额外的电子-空穴对。在各种密度和温度条件下,测量了激发后的电子弛豫。由于俄歇型电子-电子散射,观察到在约10 ps内迅速捕获到量子点中。在100 ps的时间尺度上也观察到了从量子点激发态到基态的点内弛豫。在结构中具有高度掺杂的电子密度的情况下,层间弛豫受俄歇型电子-电子散射支配,并规避了声子瓶颈效应。观察到较大尺寸量子点中的纳秒级恢复,这不是电子动力学所固有的,而是由于带弯曲和内置电压漂移引起的。还建立了整体蒙特卡罗模拟,以模拟量子点中的动力学以及与实验结果一致的原子。我们展示了单极量子点结构中电子动力学的全面情况。尽管可以通过高掺杂电子密度来克服声子瓶颈,但是单极性量子点中的弛豫过程已经以比双极性系统更长的时间尺度进行了测量。结果从微观角度解释了量子点红外光电探测器的工作原理,并为将来的应用和设计提供了基本的了解。

著录项

  • 作者

    Wu, Zong-Kwei J.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Electronics and Electrical.; Physics Condensed Matter.; Physics Optics.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 109 p.
  • 总页数 109
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;光学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号