首页> 外文学位 >A real-time simulation model for tracked vehicles.
【24h】

A real-time simulation model for tracked vehicles.

机译:履带车辆的实时仿真模型。

获取原文
获取原文并翻译 | 示例

摘要

There is a critical need for a model for high mobility tracked vehicles that can be used in real-time simulators and controller environments (hardware-in-the-loop). Such a model is essential for predicting the dynamic response (in real-time) of a tracked vehicle to driver inputs including steering, braking, and acceleration. The objective of this research is to provide this new modeling capability.; A real-time model for tracked vehicles is developed by simplifying the equations of motion for critical track and suspension components. To this end, the entire track circuit is decomposed into a lower track circuit model and an upper track circuit model due to the physics that distinguish these two subsystems. For the lower track circuit, a track element model is developed for contact on a "general" terrain profile that captures the physics of contact with the terrain, sinkage and terrain mechanics, and track bridging. A connectivity algorithm is used to properly couple the track segments occurs road wheels. Upon discretization, this approach results in a tri-diagonal system of linear equations for efficient solution of track geometry, tension and sinkage, For the upper track circuit, an element model adopted from [Scholar, 1999] is used to capture the coupled longitudinal and transverse track vibration and track sag. This element model is then coupled across supporting rollers, idler and rive sprocket to form an entire upper track circuit as in [Scholar, 1999]. Results show that this approach captures the vibration of the upper track circuit using only a few (modal) degrees of freedom. To achieve real-time it is critical to improve the computational methods as much as the model itself. A new strategy for unsymmetric sparse matrix solvers is developed to eliminate operation counts. The strategy is benchmarked against existing software packages including SuperLU, UMFPACK, SPOOLS, and WSMP specialized for solving unsymmetric linear sparse matrix systems. The new strategy improves the calculation speed by 70 times when compared to UMFPACK. Likewise, efficient integrators for ordinary differential equations are essential for real-time computation. Herein, an integrator is selected in order to minimize the function evaluations per time step with acceptable accuracy, and it is tested for efficiency, accuracy, stability, and the ability to achieve real-time.; As a first example, we evaluate a simplified tracked vehicle model composed of only two road wheels, and single upper and lower track spans. This model is used to validate the approximate wheel-track-terrain interaction model by comparing predictions with a higher-fidelity finite element model (FEM). Results for vehicles traversing flat and sinusoidal terrain show good agreement with FEM results. A second example consists of a full tracked vehicle model composed of seven road wheels (e.g. M1A1), and the associated entire track circuit. The dynamic response of this vehicle is studied while traversing both flat and rough terrain profiles, and real-time speeds are achieved. In order to evaluate accuracy, the full vehicle model is benchmarked against an existing high-fidelity model developed using the multi-body dynamics code DADS. The comparison demonstrates that the tracked vehicle model developed achieves real-time and is also ten times faster than the high-fidelity model (DADS).
机译:迫切需要一种可在实时模拟器和控制器环境(硬件在环)中使用的高机动性履带车辆模型。这样的模型对于预测被跟踪车辆对驾驶员输入(包括转向,制动和加速)的动态响应(实时)至关重要。本研究的目的是提供这种新的建模功能。通过简化关键的履带和悬架组件的运动方程,开发了一种用于履带车辆的实时模型。为此,由于区分这两个子系统的物理原理,整个轨道电路被分解为下部轨道电路模型和上部轨道电路模型。对于下部轨道电路,开发了一种用于在“一般”地形剖面上进行接触的轨道元素模型,该模型捕获了与地形,下沉和地形力学以及轨道桥接的接触物理学。连接算法用于正确耦合发生在车轮上的轨道段。离散化后,此方法将产生一个线性方程的三对角线系统,可以有效地解决轨道几何形状,张力和沉降问题。对于上部轨道电路,[Scholar,1999]采用了一个元素模型来捕获纵向和纵向耦合。横向轨道振动和轨道下陷。然后,该单元模型跨接在支撑滚子,惰轮和铆链轮上,形成一个完整的上部履带回路,如[Scholar,1999]。结果表明,该方法仅使用几个(模态)自由度即可捕获上轨道电路的振动。为了实现实时性,与模型本身一样,改进计算方法至关重要。开发了一种用于非对称稀疏矩阵求解器的新策略,以消除运算次数。该策略针对现有软件包进行了基准测试,这些软件包包括SuperLU,UMFPACK,SPOOLS和WSMP,这些软件包专门用于解决非对称线性稀疏矩阵系统。与UMFPACK相比,新策略将计算速度提高了70倍。同样,用于常微分方程的有效积分器对于实时计算至关重要。这里,选择一个积分器以便以可接受的精度最小化每个时间步的功能评估,并对其效率,精度,稳定性和实现实时能力进行测试。作为第一个示例,我们评估了一个简化的履带车辆模型,该模型仅由两个车轮组成,并具有单个上,下履带跨度。通过将预测与更高保真度的有限元模型(FEM)进行比较,该模型可用于验证近似的车轮-轨道-地形相互作用模型。穿越平坦和正弦地形的车辆的结果与有限元结果吻合良好。第二个示例包括由七个车轮(例如M1A1)组成的全履带车辆模型,以及相关的整个履带电路。在横穿平坦和崎terrain的地形时研究了该车的动态响应,并获得了实时速度。为了评估准确性,将完整的车辆模型与使用多体动力学代码DADS开发的现有高保真模型进行基准测试。对比表明,所开发的跟踪车辆模型可以实现实时,并且比高保真模型(DADS)快十倍。

著录项

  • 作者

    Lee, Jae Hong.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 198 p.
  • 总页数 198
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号