首页> 外文OA文献 >Robust Real-time Vision-based Aircraft Tracking From UnmannedudAerial Vehicles.
【2h】

Robust Real-time Vision-based Aircraft Tracking From UnmannedudAerial Vehicles.

机译:从无人 ud进行可靠的基于实时视觉的飞机跟踪空中交通工具。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Aircraft tracking plays a key and important role in the Sense-and-Avoid system of Unmanned Aerial Vehicles (UAVs). This paper presents a novel robust visual tracking algorithm for UAVs in the midair to track an arbitrary aircraft at real-time frame rates, together with a unique evaluation system. This visual algorithm mainly consists of adaptive discriminative visual tracking method, Multiple-Instance (MI) learning approach, Multiple-Classifier (MC) voting mechanism and Multiple-Resolution (MR) representation strategy, that is called Adaptive M3 tracker, i.e. AM3. In this tracker, the importance of test sample has been integrated to improve the tracking stability, accuracy and real-time performances. The experimental results show that this algorithm is more robust, efficient and accurate against the existing state-of-art trackers, overcoming the problems generated by the challenging situations such as obvious appearance change, variant surrounding illumination, partial aircraft occlusion, blur motion, rapid pose variation and onboard mechanical vibration, low computation capacity and delayed information communication between UAVs and Ground Station (GS). To our best knowledge, this is the first work to present this tracker for solving online learning and tracking freewill aircraft/intruder in the UAVs.
机译:飞机跟踪在无人飞行器(UAV)的“感官与回避”系统中起着关键和重要的作用。本文提出了一种新颖的,鲁棒的视觉跟踪算法,用于空中无人机以实时帧速率跟踪任意飞机,以及独特的评估系统。该视觉算法主要由自适应判别式视觉跟踪方法,多实例(MI)学习方法,多分类器(MC)投票机制和多分辨率(MR)表示策略组成,称为自适应M3跟踪器,即AM3。在此跟踪器中,测试样本的重要性已被集成,以提高跟踪稳定性,准确性和实时性能。实验结果表明,与现有的最新跟踪器相比,该算法更加健壮,高效,准确,克服了外观变化明显,周围照明变化,飞机局部遮挡,运动模糊,快速等具有挑战性的情况所产生的问题。姿态变化和机载机械振动,低计算能力以及无人机与地面站(GS)之间的信息通信延迟。据我们所知,这是介绍此跟踪器的第一项工作,该跟踪器用于解决在线学习和跟踪无人机中的自由意志飞机/入侵者。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号