首页> 外文学位 >Finite element analysis of multilayer transmission lines and circuit components.
【24h】

Finite element analysis of multilayer transmission lines and circuit components.

机译:多层传输线和电路组件的有限元分析。

获取原文
获取原文并翻译 | 示例

摘要

The finite element method is applied to simulate frequency-domain electromagnetic behaviors of multilayer transmission lines and multilayer circuit components that are commonly used in microwave, RF circuits, integrated circuits, and electronic circuit packaging and interconnects. Some difficulties encountered in numerical simulations are tackled with special treatments. First, a generalized eigenvalue problem for inhomogeneous multilayer transmission lines is formulated with the full-wave finite element method. Computationally efficient solvers are employed to solve the eigenvalue problem, which make the fast full-wave field solution possible for hundreds of thousands or even millions of unknowns. Several issues in the simulation are discovered and discussed. Second, the full-wave field solution of transmission lines is used to extract distributed circuit parameters that are useful in circuit designs. A traditional 2-D quasi-TEM finite element method is also extended to handle anisotropic materials in the transmission line analysis. Third, the 3-D full-wave finite element method is applied to analyze circuit components on multilayer boards. The first-order absorbing boundary condition is used to truncate the simulation domain, and the eigenfunction expansion method is used to connect the circuit component to signal inputs and outputs. A new E-H type eigenfunction expansion formulation is used for inhomogeneous port boundary conditions. Various types of planar structures are calculated with the 3-D finite element method. Fourth, a domain decomposition algorithm is developed to reduce the computational efforts in the 3-D multilayer circuit component simulation. The domain decomposition algorithm is further accelerated by a new order-reduction method using modal field basis functions on intersubdomain surfaces and port surfaces. Examples show that the accelerated domain decomposition algorithm greatly improves the performance of the finite element simulation for large multilayer circuit problems. Last, conclusion and possible future research topics are discussed. General computer programs implementing the ideas of this dissertation have been written. Various types of structures are simulated and the results are verified to validate the formulations and their code implementations.
机译:应用有限元方法来模拟通常用于微波,RF电路,集成电路,电子电路封装和互连的多层传输线和多层电路组件的频域电磁行为。通过特殊处理可以解决数值模拟中遇到的一些困难。首先,用全波有限元方法提出了不均匀多层传输线的广义特征值问题。使用计算有效的求解器来解决特征值问题,这使快速的全波场解决方案可用于成千上万甚至数百万个未知数。发现并讨论了模拟中的几个问题。其次,传输线的全波场解决方案用于提取在电路设计中有用的分布式电路参数。还扩展了传统的二维准TEM有限元方法,以处理传输线分析中的各向异性材料。第三,将3-D全波有限元方法用于分析多层板上的电路组件。一阶吸收边界条件用于截断仿真域,本征函数展开方法用于将电路组件连接到信号输入和输出。一种新的E-H型特征函数扩展公式用于非均匀端口边界条件。使用3-D有限元方法可以计算出各种类型的平面结构。第四,开发了一种域分解算法,以减少3-D多层电路组件仿真中的计算量。域分解算法通过使用子域间表面和端口表面上的模态场基函数的新的降阶方法进一步加速。实例表明,对于大的多层电路问题,加速域分解算法大大提高了有限元仿真的性能。最后,讨论结论和可能的未来研究主题。编写了实现本论文思想的通用计算机程序。模拟了各种类型的结构,并对结果进行了验证,以验证公式及其代码实现。

著录项

  • 作者

    Mao, Kaiyu.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Engineering Electronics and Electrical.; Engineering Packaging.; Physics Electricity and Magnetism.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 129 p.
  • 总页数 129
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号