首页> 外文学位 >A study of the effects of rare-earth elements on the microstructural evolution and deformation behavior of magnesium alloys at temperatures up to 523K.
【24h】

A study of the effects of rare-earth elements on the microstructural evolution and deformation behavior of magnesium alloys at temperatures up to 523K.

机译:研究稀土元素对温度高达523K的镁合金的组织演变和变形行为的影响。

获取原文
获取原文并翻译 | 示例

摘要

Due to their high specific strength, lightweight magnesium (Mg) alloys are being increasingly used for applications, such as the automotive industry, where weight savings are critical. In order to develop new alloys and processing methods to achieve higher strength and better formability to compete with currently used metal alloys, it is important to understand the effects of alloying elements, processing, and temperature on the microstructure, mechanical properties, and the deformation behavior.;In this dissertation, a systematic investigation on the effects of Nd additions (0--1wt.%) and temperature (298--523K) on the microstructure and the activity of different deformation modes in as-cast and cast-then-extruded Mg-1Mn (wt.%) alloys were performed. For this study, an in-situ testing technique which combines tension and compression testing inside a scanning electron microscope (SEM) with electron backscatter diffraction (EBSD) analysis was employed.;The main findings of this work were that the microstructure, strength, and the distribution of the deformation modes varied significantly as a function of Nd content, temperature, and processing. An increase in the Nd content resulted in a weaker texture after extrusion in Mg-1Mn alloys. A combination of slip and twinning mechanisms controlled the tensile deformation in the extruded alloys at ambient temperatures. With an increase in temperature, the twinning activity decreased, and slip mechanisms dominated the deformation. In the extruded Nd-containing alloys, basal slip dominated the deformation, especially at elevated temperatures, suggesting that Nd additions strengthen basal slip. This resulted in excellent elevated-temperature strength retention in extruded Mg-1Mn-1Nd alloy, and a decrease in the Nd content to 0--0.3wt.% resulted in a decrease in the tensile strength at elevated temperatures. In extruded Mg-1Mn, contraction twinning dominated the tensile deformation and this alloy exhibited a lower elongation-to-failure (epsilon f) than the other alloys at 323K. With an increase in strain, these twins evolved into {101¯1} - {101¯2} double twins. Crystal plasticity modeling and simulation of the contraction twins and double twins showed that the activity of these twin modes is detrimental to the epsilon f of Mg alloys due to the strain localization that happens within the twinned volume due to the enhanced activity of basal slip. This agreed with the experimental observations. Compared to the extruded materials, the as-cast alloys exhibited significantly larger grain sizes and lower tensile strengths. The deformation in the as-cast alloys was dominated by a combination of basal slip and extension twinning at all test temperatures.;A novel methodology which combines in-situ annealing inside a SEM with EBSD analysis was developed and employed to understand the effects of dilute Ce additions (0.2--0.6wt.%) on the recrystallization behavior in Mg-2Zn (wt.%) alloys. Texture weakening in these alloys resulted from the formation of an enhanced number of grain boundaries with rotation axis during recrystallization. The developed testing methodology will be valuable for future recrystallization studies on Mg and other alloy systems.;Overall, the insights gained from this dissertation will have a broad impact on understanding the deformation behavior and microstructural evolution of RE-containing Mg alloys, and such insights can serve as guidance for the development of new alloys and processes. The information and data provided in this dissertation can also serve as inputs for the development of accurate crystal plasticity models.
机译:由于它们的高比强度,轻质镁(Mg)合金正越来越多地用于要求减轻重量的应用,例如汽车工业。为了开发新的合金和加工方法以达到更高的强度和更好的可成型性以与目前使用的金属合金竞争,重要的是了解合金元素,加工和温度对微观结构,机械性能和变形行为的影响。 。;本论文系统地研究了Nd添加量(0--1wt。%)和温度(298--523K)对铸态和铸态后微观组织和不同变形模式的活性的影响。进行挤压的Mg-1Mn(wt。%)合金。在这项研究中,采用了将扫描电子显微镜(SEM)内的拉伸和压缩测试与电子背向散射衍射(EBSD)分析相结合的原位测试技术;这项工作的主要发现是显微组织,强度和变形模式的分布随Nd含量,温度和工艺的变化而显着变化。 Nd含量的增加导致Mg-1Mn合金挤压后的组织变弱。滑动和孪生机制的组合控制了室温下挤压合金的拉伸变形。随着温度的升高,孪生活性降低,滑动机理主导了变形。在挤压的含Nd合金中,基体滑移是变形的主导因素,尤其是在高温下,这表明添加Nd可以增强基体滑移。这在挤出的Mg-1Mn-1Nd合金中具有优异的高温强度保持力,而Nd含量降低至0--0.3wt。%导致高温下的拉伸强度降低。在挤压的Mg-1Mn中,收缩孪晶主导拉伸变形,并且该合金在323K时显示出比其他合金更低的断裂伸长率(εf)。随着应变的增加,这些双胞胎演化成{101’1}-{101’2}双胞胎。晶体孪晶和双孪晶的结晶塑性建模和仿真表明,由于基底滑移的活动增强,孪生区内发生应变局部化,因此这些孪生模式的活性对Mg合金的εf有害。这与实验观察一致。与挤压材料相比,铸态合金表现出明显更大的晶粒尺寸和更低的拉伸强度。在所有测试温度下,铸态合金的变形都以基体滑移和延伸孪生为主导。;开发了一种将SEM内部原位退火与EBSD分析相结合的新方法,并用于理解稀释的影响铈(0.2--0.6wt。%)对Mg-2Zn(wt。%)合金的重结晶行为。这些合金的织构弱化是由于在重结晶过程中形成了许多具有旋转轴的晶界。完善的测试方法将对镁和其他合金体系的再结晶研究具有重要的参考价值。总体而言,从本论文中获得的见识将对理解含稀土镁合金的变形行为和微观组织演变产生广泛的影响。可以作为新合金和新工艺开发的指南。本文提供的信息和数据也可以作为建立精确的晶体塑性模型的输入。

著录项

  • 作者

    Chakkedath, Ajith.;

  • 作者单位

    Michigan State University.;

  • 授予单位 Michigan State University.;
  • 学科 Materials science.;Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 337 p.
  • 总页数 337
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号