首页> 外文学位 >Planification de trajectoires pour une flotte d'UAVs.
【24h】

Planification de trajectoires pour une flotte d'UAVs.

机译:规划无人机机队的航迹。

获取原文
获取原文并翻译 | 示例

摘要

In this thesis we address the problem of coordinating and controlling a fleet of Unmanned Aerial Vehicles (UAVs) during a surveillance mission in a dynamic context. The problem is vast and is related to several scientific domains. We have studied three important parts of this problem: • modeling the ground with all its constraints; • computing a shortest non-holonomic continuous path in a risky environment with a presence of obstacles; • planning a surveillance mission for a fleet of UAVs in a real context.;We have first modeled the ground as a directed graph. However, instead of using a classic mesh, we opted for an intelligent modeling that reduces the computing time on the graph without losing accuracy. The proposed model is based on the concept of visibility graph, and it also takes into account the obstacles, the danger areas and the constraint of non-holonomy of the UAVs- the kinematic constraint of the planes that imposes a maximum steering angle. The graph is then cleaned to keep only the minimum information needed for the calculation of trajectories. The generation of this graph possibly requires a lot of computation time, but it is done only once before the planning and will not affect the performance of trajectory calculations. We have also developed another simpler graph that does not take into account the constraint of non-holonomy. The advantage of this second graph is that it reduces the computation time. However, it requires the use of a correction procedure to make the resulting trajectory non-holonomic. This correction is possible within the context of our missions, but not for all types of autonomous vehicles.;Once the directed graph is generated, we propose the use of a procedure for calculating the shortest continuous non-holonomic path in a risky environment with the presence of obstacles. The directed graph already incorporates all the constraints, which makes it possible to model the problem as a shortest path problem with resource a resource constraint (the resource here is the amount of permitted risk). The results are very satisfactory since the resulting routes are non-holonomic paths that meet all constraints. Moreover, the computing time is very short. For cases based on the simpler graph, we have created a procedure for correcting the trajectory to make it non-holonomic. All calculations of non-holonomy are based on Dubins curves (1957).;We have finally applied our results to the planning of a mission of a fleet of UAVs in a risky environment with the presence of obstacles. For this purpose, we have developed a directed multi-graph where, for each pair of targets (points of departure and return of the mission included), we calculate a series of shorter trajectories with different limits of risk -- from the risk-free path to the riskiest path. We then use a Tabu Search with two tabu lists. Using these procedures, we have been able to produce routes for a fleet of UAVs that minimize the cost of the mission while respecting the limit of risk and avoiding obstacles. Tests are conducted on examples created on the basis of descriptions given by the Canadian Defense and, also on some instances of the CVRP (Capacitated Vehicle Routing Problem), those described by Christofides et Elion and those described by Christofides, Mingozzi et Toth. The results are of very satisfactory since all trajectories are non-holonomic and the improvement of the objective, when compared to a simple constructive method, achieves in some cases between 10 % and 43 %. We have even obtained an improvement of 69 %, but on a poor solution generated by a greedy algorithm. (Abstract shortened by UMI.);While investigating the scientific literature related to these topics, we have detected deficiencies in the modeling of the ground and in the computation of the shortest continuous path, two critical aspects for the planning of a mission. So after the literature review, we have proposed answers to these two aspects and have applied our developments to the planning of a mission of a fleet of UAVs in a risky environment with the presence of obstacles. Obstacles could be natural like mountain or any non flyable zone.
机译:在这篇论文中,我们解决了在动态环境下的监视任务中协调和控制无人飞行器(UAV)机队的问题。这个问题是巨大的,并且涉及几个科学领域。我们研究了此问题的三个重要部分:•对具有所有约束的地面建模; •在有障碍物的危险环境中计算最短的非完整连续路径; •在真实环境中计划对无人机机队的监视任务。;我们首先将地面建模为有向图。但是,我们没有使用经典的网格,而是选择了一种智能建模,该模型可以减少图形上的计算时间而又不会降低精度。所提出的模型基于可见性图的概念,并且还考虑了无人机的障碍,危险区域和非完整性的约束-施加最大转向角的飞机的运动学约束。然后清除图形以仅保留计算轨迹所需的最少信息。该图的生成可能需要大量的计算时间,但是仅在计划之前完成一次,并且不会影响轨迹计算的性能。我们还开发了另一个更简单的图,其中没有考虑非完整性的约束。该第二张图的优点是它减少了计算时间。但是,它需要使用校正程序来使所得轨迹不完整。在我们的任务范围内,这种校正是可能的,但并非对所有类型的自动驾驶汽车都是如此。;一旦生成了有向图,我们建议使用一种程序来计算具有风险的环境中最短的连续非完整路径。存在障碍。有向图已经包含了所有约束,这使得可以将问题建模为具有资源和资源约束的最短路径问题(此处的资源是允许的风险量)。结果非常令人满意,因为生成的路径是符合所有约束的非完整路径。而且,计算时间非常短。对于基于简单图的情况,我们创建了一个校正轨迹以使其不完整的过程。所有非完整性的计算均基于Dubins曲线(1957年)。我们最终将我们的结果应用于在有障碍物存在的危险环境中的无人机机群的计划。为此,我们制定了有向的多重图,其中,对于每对目标(包括任务的出发和返回点),我们从无风险的角度计算一系列具有不同风险极限的较短轨迹通往最危险的道路。然后,我们使用带有两个禁忌列表的禁忌搜索。使用这些程序,我们已经能够为无人飞行器机队提供路线,从而将任务成本降至最低,同时尊重风险极限并避免障碍。测试是基于根据加拿大国防部的描述而创建的示例进行的,此外还针对CVRP(无能力车辆路径问题),Christofides等的描述以及Christofides,Mingozzi等的描述进行了测试。结果非常令人满意,因为所有轨迹都不是完整的,并且与简单的构造方法相比,在某些情况下,目标的改进达到了10%到43%之间。我们甚至获得了69%的改进,但是在由贪婪算法生成的较差解决方案上。 (摘要由UMI缩短。);在研究与这些主题相关的科学文献时,我们发现了地面建模和最短连续路径的计算方面的缺陷,这是任务计划的两个关键方面。因此,在文献回顾之后,我们针对这两个方面提出了答案,并将我们的发展应用于在有障碍物存在的危险环境中的无人机机群的计划。障碍物可能很自然,如高山或任何非飞行区。

著录项

  • 作者

    Ait El Cadi, Abdessamad.;

  • 作者单位

    Ecole Polytechnique, Montreal (Canada).;

  • 授予单位 Ecole Polytechnique, Montreal (Canada).;
  • 学科 Engineering Aerospace.;Engineering Mechanical.;Operations Research.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 196 p.
  • 总页数 196
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号