首页> 外文学位 >Threshold extension of gallium arsenide/aluminum(x) gallium(1-x) arsenide terahertz detectors and switching in heterostructures.
【24h】

Threshold extension of gallium arsenide/aluminum(x) gallium(1-x) arsenide terahertz detectors and switching in heterostructures.

机译:砷化镓/铝(x)砷化镓(1-x)太赫兹检测器的阈值扩展和异质结构转换。

获取原文
获取原文并翻译 | 示例

摘要

In this work, homojunction interfacial workfunction internal photoemission (HIWIP) detectors based on GaAs, and heterojunction interfacial workfunction internal photoemission (HEIWIP) detectors based mainly on the GaAs/Al xGa1-xAs material system are presented. Design principles of HIWIP and HEIWIP detectors, such as free carrier absorption, photocarrier generation, photoemission, and responsivity, are discussed in detail. Results of p-type HIWIPs based on GaAs material are presented. Homojunction detectors based on p-type GaAs were found to limit their operating wavelength range. This is mainly due to band depletion arising through carrier transitions from the heavy/light hole bands to the split off band. Designing n-type GaAs HIWIP detectors is difficult as it is strenuous to control their workfunction.;Heterojunction detectors based on GaAs/AlxGa 1-xAs material system will allow tuning their threshold wavelength by adjusting the alloy composition of the Al xGa1-xAs barrier, while keeping a fixed doping density in the emitter. The detectors covered in this work operate from 1 to 128 microm (300 to 2.3 THz). Enhancement of detector response using resonance cavity architecture is demonstrated. Threshold wavelength extension of HEIWIPs by varying the Al composition of the barrier was investigated. The threshold limit of ∼ 3.3 THz (92 microm), due to a practical Al fraction limit of ∼ 0.005, can be overcome by replacing GaAs emitters in GaAs/AlxGa1-xAs HEIWIPs with AlxGa1-xAs emitters. As the initial step, terahertz absorption for 1 microm-thick Be-doped AlxGa1-xAs epilayers (with different Al fraction and doping density) grown on GaAs substrates was measured. The absorption probability of the epilayers was derived from these absorption measurements. Based on the terahertz absorption results, an AlxGa1-xAs/GaAs HEIWIP detector was designed and the extension of threshold frequency ( f0) to 2.3 THz was successfully demonstrated.;In a different study, switching in GaAs/AlxGa1- xAs heterostructures from a tunneling dominated low conductance branch to a thermal emission dominated high conductance branch was investigated. This bistability leads to neuron-like voltage pulses observed in some heterostructure devices. The bias field that initiates the switching was determined from an iterative method that uses feedback information, such as carrier drift velocity and electron temperature, from hot carrier transport. The bias voltage needed to switch the device was found to decrease with the increasing device temperature.
机译:在这项工作中,提出了基于GaAs的同质结界面功函数内部光发射(HIWIP)检测器,以及主要基于GaAs / Al xGa1-xAs材料系统的异质结界面功函数内部光发射(HEIWIP)检测器。详细讨论了HIWIP和HEIWIP检测器的设计原理,例如自由载流子吸收,光载流子产生,光发射和响应度。介绍了基于GaAs材料的p型HIWIP的结果。发现基于p型GaAs的同质结检测器会限制其工作波长范围。这主要是由于载流子从重/轻空穴带到分离带的跃迁引起的带耗尽。设计n型GaAs HIWIP探测器很困难,因为它很难控制其功函数。基于GaAs / AlxGa 1-xAs材料系统的异质结探测器可以通过调整Al xGa1-xAs势垒的合金成分来调整其阈值波长,同时在发射极中保持固定的掺杂密度。这项工作涵盖的探测器的工作范围为1到128微米(300到2.3 THz)。演示了使用谐振腔架构增强检测器响应的能力。研究了通过改变势垒的Al组成的HEIWIP的阈值波长扩展。由于实际的Al分数限制为〜0.005,因此约3.3 THz(92微米)的阈值限制可以通过用AlxGa1-xAs发射极代替GaAs / AlxGa1-xAs HEIWIP中的GaAs发射极来克服。作为第一步,测量了生长在GaAs衬底上的1微米厚的Be掺杂AlxGa1-xAs外延层(具有不同的Al分数和掺杂密度)的太赫兹吸收。从这些吸收测量值得出外延层的吸收概率。基于太赫兹吸收结果,设计了AlxGa1-xAs / GaAs HEIWIP检测器,并成功证明了阈值频率(f0)扩展至2.3 THz。研究了以热传导为主的低支路支路以热传导为主的支路。这种双稳态导致在某些异质结构器件中观察到神经元样的电压脉冲。引发切换的偏置场是通过迭代方法确定的,该方法使用了来自热载流子传输的反馈信息,例如载流子漂移速度和电子温度。发现切换器件所需的偏置电压随着器件温度的升高而降低。

著录项

  • 作者

    Rinzan, Mohamed B.;

  • 作者单位

    Georgia State University.;

  • 授予单位 Georgia State University.;
  • 学科 Physics Condensed Matter.;Physics Radiation.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 382 p.
  • 总页数 382
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号