首页> 外文学位 >Capturing, indexing, and retrieving system history.
【24h】

Capturing, indexing, and retrieving system history.

机译:捕获,索引和检索系统历史记录。

获取原文
获取原文并翻译 | 示例

摘要

Complex networked systems are widely deployed today and support many popular services such as Google and Ebay.com. Due to their size and complexity, these systems tend to behave in ways that are difficult for operators to understand. In addition, frequent changes such as hardware and software upgrades mean that insights into system behavior could be invalidated at any time. When these complex systems exhibit problems, administrators must often analyze millions of metrics collected about system state, the vast majority of which are irrelevant for any particular problem. Furthermore, systematic methods of utilizing previous diagnostic efforts to aid problem resolution are lacking.; This dissertation describes our approach of automatically extracting indexable descriptions, or signatures, that distill the system information most associated with a problem and can be formally manipulated to facilitate automated clustering and similarity based search. We argue that our technique helps operators better manage problems both by improved leveraging of past diagnostic efforts, and by automated identification of relevant system information.; The first half of this thesis details how signatures can be used to aid system problem diagnosis and the methodology for evaluating their effectiveness. We also present a specific signature construction method based on statistical machine learning and show that signatures generated in this manner have significantly better clustering and retrieval properties compared to naive approaches. We validated our techniques on a testbed system with injected problems, as well as a production system serving real customers.; The latter half of this thesis focuses on a couple of challenges we faced. First, because system behavior is often highly dynamic, we introduce a technique for employing an ensemble of models to capture changes in behavior. Second, problem symptoms often depend on how normal system behavior is defined. We present a method of using multiple models of normality to make signatures robust to variances in normal system behavior.; We believe our signatures-based approach offers a promising framework for leveraging statistical and information retrieval techniques to address the challenges posed by the complexity of today's and tomorrow's systems.
机译:如今,复杂的网络系统已得到广泛部署,并支持许多流行的服务,例如Google和Ebay.com。由于它们的大小和复杂性,这些系统的行为往往使操作员难以理解。此外,频繁的更改(例如硬件和软件升级)意味着对系统行为的洞察力随时可能失效。当这些复杂的系统出现问题时,管理员必须经常分析数以百万计的有关系统状态的指标,其中绝大多数与任何特定问题均无关。此外,缺乏利用先前的诊断努力来帮助解决问题的系统方法。本文介绍了我们自动提取可索引的描述或签名的方法,该方法可提取与问题最相关的系统信息,并且可以对其进行形式化操作以促进自动聚类和基于相似度的搜索。我们认为,我们的技术可以通过改进对过去诊断工作的利用以及对相关系统信息的自动识别来帮助操作员更好地管理问题。本文的前半部分详细介绍了如何使用签名来辅助系统问题诊断以及评估其有效性的方法。我们还提出了一种基于统计机器学习的特定签名构建方法,并表明以这种方式生成的签名与朴素的方法相比具有明显更好的聚类和检索特性。我们在存在问题的测试平台系统以及为真实客户提供服务的生产系统上验证了我们的技术。本文的后半部分重点介绍了我们面临的两个挑战。首先,由于系统行为通常是高度动态的,因此我们引入了一种使用模型集成来捕获行为变化的技术。其次,问题症状通常取决于正常系统行为的定义方式。我们提出了一种使用多个正常模型的方法,以使签名对正常系统行为的变化具有鲁棒性。我们认为,基于签名的方法为利用统计和信息检索技术提供了一个有前途的框架,以应对当今和未来系统的复杂性带来的挑战。

著录项

  • 作者

    Zhang, Steve Yu.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Computer Science.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 124 p.
  • 总页数 124
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 自动化技术、计算机技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号