首页> 外文学位 >On existence and convergence of SLE in multiply connected domains.
【24h】

On existence and convergence of SLE in multiply connected domains.

机译:关于SLE在多重连接域中的存在和收敛。

获取原文
获取原文并翻译 | 示例

摘要

Using tools from complex analysis, this thesis extends some arguments given by Garabedian in proving Hadamard's variation formula of the Green's function to show that the vector field associated with the chordal and bilateral Komatu-Loewner equation is Lipschitz. This is crucial in proving the existence theorems of the Komatu-Loewner equations for SLE in multiply connected domains. A now proof of the existence theorem for the chordal Komatu-Loewner equation, as an example of the general method, is also given. Next, this thesis discusses the convergence of bilateral SLE to radial SLE in multiply connected domains in a special case: the convergence of annulus bilateral SLE to radial SLE. The convergence is described in terms of the driving function, which is a random motion on the boundary of the domain. As the inner circular hole of a domain where a bilateral SLE curve grows shrinks to a point, its driving function goes to a limit, which is a natural driving function of the corresponding radial SLE, up to a time change. For general standard (multiply connected) domains, a comparison theorem of bilateral SLE and radial SLE is given and proved: if the radius of the inner circular hole is small enough (bilateral case), the natural driving function for the radial SLE associated to a radial standard domain is close to the natural driving function for the bilateral SLE associated to a bilateral standard domain, which is the radial domain except that it has the circular hole. If kappa = 6, the comparison theorem holds without taking the limit of the size of the inner circular hole and implies a locality property for SLE in multiply connected domains.
机译:本文使用复杂分析中的工具,扩展了Garabedian在证明格林函数的Hadamard变式公式时所给出的一些论点,以表明与弦和双边Komatu-Loewner方程相关的向量场是Lipschitz。这对于证明多重连通域中SLE的Komatu-Loewner方程的存在性定理至关重要。作为一般方法的一个例子,现在也给出了弦式Komatu-Loewner方程存在性定理的证明。接下来,本文讨论了在特殊情况下双侧SLE向径向SLE的收敛:一种特殊情况:环空双侧SLE向径向SLE的收敛。收敛是根据驱动函数来描述的,该函数是在域边界上的随机运动。随着双边SLE曲线增长的区域的内部圆形孔缩小到一个点,其驱动功能达到极限,这是相应径向SLE的自然驱动功能,直至时间变化。对于通用标准(多重连接)域,给出了双向SLE和径向SLE的比较定理并证明:如果内圆孔的半径足够小(双向情况),则径向SLE的自然驱动函数与径向标准域接近于与双边标准域相关联的双边SLE的自然驱动函数,该标准是径向域,除了它具有圆形孔。如果kappa = 6,则比较定理成立,而没有限制内部圆形孔的大小,并且暗示了SLE在多重连接域中的局部性。

著录项

  • 作者

    Kou, Ming.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 81 p.
  • 总页数 81
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 数学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号