首页> 外文学位 >Predicting the potential distribution of an invasive plant using stratified sampling and habitat modeling.
【24h】

Predicting the potential distribution of an invasive plant using stratified sampling and habitat modeling.

机译:使用分层抽样和栖息地模型预测入侵植物的潜在分布。

获取原文
获取原文并翻译 | 示例

摘要

Habitat models used to predict the distribution of invasive species are often produced using compiled presence data collected for purposes other than modeling. These localities are likely to be autocorrelated and may create biased models. To address potential bias, I used a stratified scheme to collect presence data. I sampled for Tibouchina herbacea, an invasive herb from South America, across stratified zones on Kohala Mountain, Hawai'i, based on four environmental gradients: vegetation, slope, rainfall and elevation. The sampled localities represented the diversity of environments that characterize T. herbacea's current distribution, and were used to create a predictive habitat model with the GARP genetic algorithm. The model had 7% omission error, and over-predicted presence, with a 35% commission error. Over-predicted locations were likely sites of further range expansion of this invasive species. T. herbacea was associated with wet forests in both the local-scale associations as well as the habitat model predictions.
机译:用于预测入侵物种分布的栖息地模型通常是使用收集的存在数据(除建模以外)收集的。这些位置可能是自相关的,并可能创建有偏差的模型。为了解决潜在的偏见,我使用了分层方案来收集状态数据。我根据四个环境梯度:植被,坡度,降雨量和海拔,从夏威夷科哈拉山的分层区域中抽取了南美入侵性草Tibouchina药草样本。抽样的地点代表了草T草当前分布特征的环境多样性,并被用于通过GARP遗传算法创建预测性生境模型。该模型的遗漏误差为7%,并且存在过多的预测值,佣金误差为35%。过度预测的位置可能是该入侵物种进一步扩大范围的地点。在地方尺度的关联以及生境模型的预测中,草粉虱与湿润的森林有关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号