首页> 外文学位 >Micro- and nano-periodic-structure-based devices for laser beam control.
【24h】

Micro- and nano-periodic-structure-based devices for laser beam control.

机译:基于微周期和纳米周期结构的用于激光束控制的设备。

获取原文
获取原文并翻译 | 示例

摘要

With the progress of microfabrication and nanofabrication technologies, there has been a reawakened interest in the possibility of controlling the propagation of light in various materials periodically structured at a scale comparable to, or slightly smaller than the wavelength. We can now engineer materials with periodic structures to implement a great variety of optical phenomena. These include well known effects, such as dispersing a variety of wavelength to form a spectrum and diffracting light and controlling its propagation directions, to new ones such as prohibiting the propagation of light in certain directions at certain wavelengths and localizing light with defects in some artificially synthesized dielectric materials. Advances in this field have had tremendous impact on modern optical and photonic technologies. This doctoral research was aimed at investigating some of the physics and applications of periodic structures for building blocks of the optical communication and interconnection system.; Particular research emphasis was placed on the exploitation of innovative periodic structure-based optical and photonic devices featuring better functionality, higher performance, more compact size, and easier fabrication. Research topics extended from one-dimensional periodic-structure-based wavelength-division-multiplexing (WDM) optical interconnects (beam wavelength selection devices), and liquid crystal beam steerers (beam steering devices), to two-dimensional periodic-structure-based silicon photonic-crystal thermo-optic and electro-optic modulators (beam switching devices). This research was specifically targeted to seek novel and effective solutions to some long-standing technical problems, such as the limited wavelength coverage of coarse WDM devices, small bandwidth of highly dispersed dense WDM devices, low deflection efficiency of high-resolution liquid crystal beam steerers, slow switching speed, large device size, and high power consumption of silicon optical modulators, among others. For each subtopic, research challenges were presented and followed by the proposed solutions with extensive theoretical analysis. The proposals were then verified by experimental implementations. Experimental results were carefully interpreted and the future improvements were also discussed.
机译:随着微细加工和纳米加工技术的进步,人们开始重新关注控制光在周期性地以与波长相当或略小于波长的尺寸构造的各种材料中的传播的可能性。现在,我们可以设计具有周期性结构的材料,以实现各种各样的光学现象。这些包括众所周知的效果,例如分散各种波长以形成光谱并衍射光并控制其传播方向,到新的效果,例如禁止光在某些方向上在某些方向上传播,并在某些情况下人为地定位有缺陷的光。合成介电材料。该领域的进步对现代光学和光子技术产生了巨大影响。该博士研究的目的是研究周期性结构的一些物理和应用,这些周期性结构用于光通信和互连系统的构建块。特别的研究重点放在了创新的基于周期性结构的光学和光子器件的开发上,这些器件具有更好的功能,更高的性能,更紧凑的尺寸以及更容易的制造。研究主题从基于一维周期性结构的波分复用(WDM)光互连(光束波长选择设备)和液晶光束转向器(光束操纵设备)扩展到基于二维周期性结构的硅光子晶体热光和电光调制器(光束开关设备)。这项研究专门针对一些长期存在的技术问题寻求新颖有效的解决方案,例如粗糙WDM设备的波长覆盖范围有限,高分散密集WDM设备的带宽小,高分辨率液晶光束转向器的偏转效率低。 ,硅光调制器的开关速度慢,器件尺寸大,功耗高等。对于每个子主题,提出了研究挑战,随后提出了具有广泛理论分析能力的解决方案。然后,通过实验实施对提案进行验证。仔细解释了实验结果,并讨论了未来的改进。

著录项

  • 作者

    Gu, Lanlan.;

  • 作者单位

    The University of Texas at Austin.$bElectrical Engineering.;

  • 授予单位 The University of Texas at Austin.$bElectrical Engineering.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 145 p.
  • 总页数 145
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号