首页> 外文学位 >Reliability and performance issues in nanoscale SOI CMOS.
【24h】

Reliability and performance issues in nanoscale SOI CMOS.

机译:纳米SOI CMOS中的可靠性和性能问题。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation is an examiner of some emerging reliability and performance issues in nanoscale Silicon on Insulator (SOI) CMOS technologies. Hot Carrier Effects (HCE) in particular, although initially not expected to be a reliability issue for the low operating voltages of modern, nanoscale CMOS technologies, are actually found to persist at or even less than 1.0 V. The possibilities of several low-energy driven mechanisms for hot carrier generation that have been recently discovered and the complicated nature of hot-carrier induced degradation of SOI MOSFETs suggest that a careful interpretation needs to be taken on the hot carrier reliability of deeply scaled SOI MOSFETs.; The influence of the Floating Body Effects (FBEs) in particular on the hot-carrier induced degradation in N-channel SOI MOSFETs is currently not fully understood and several controversial and unexplained results have surfaced in the recent literature. In this dissertation, a series of carefully designed experiments are being conducted to thoroughly examine this issue. The experimental observations show enhanced degradation with increasing FBE strength, establishing the prevailing role of the FBE current enhancement on the degradation over the concurrent lateral electric field reduction. In addition, measurements of the valence band electron tunneling originated substrate currents for both grounded body and body biased transistors (resembling floating body operation) suggests an increasing effectiveness of the associated hot-carrier degradation mechanism for the body biased devices, consistent with the measured degradation results.; With regard to P-channel SOI MOSFETs, we have carried out an investigation of the aging/recovery mechanisms under various stress conditions. It is found that worst case degradation occurs at stress under high gate/high drain bias rather than the conventional low gate/high drain bias. A series of experiments unambiguously demonstrate that this damage is not caused by hot hole injection as it was previously thought and that it is actually due to concurrent Negative Bias Temperature stress, accelerated by device self-heating.; Besides the reliability investigations, this dissertation undertakes an examination of the performance potentials of the Double Gate (DG) SOI structure in novel circuit topologies. The results of these investigations are very timely since DG-SOI MOSFETs are considered to be the most promising device architecture for enabling non-classical, nano-scale CMOS (beyond the 50 nm node). A novel circuit design style is proposed, where a symmetric double gate device featuring a negative threshold voltage (i.e., depletion mode) is used as a load and symmetric double gate devices (inversion mode) serve as the drivers. Using this technique, a basic inverter was designed with better performance compared to "classical" CMOS. This technique was extended to create a robust, self-restoring SOI domino-style logic.
机译:本文对纳米级绝缘体上硅(SOI)CMOS技术中一些新兴的可靠性和性能问题进行了研究。尤其是热载流子效应(HCE),尽管起初并不期望现代纳米CMOS技术的低工作电压会带来可靠性问题,但实际上却发现其维持在甚至低于1.0 V的水平。几种低能量的可能性最近发现的热载流子产生的驱动机制以及热载流子引起的SOI MOSFET退化的复杂性表明,需要对深尺度SOI MOSFET的热载流子可靠性进行仔细的解释。浮体效应(FBEs),尤其是热载流子引起的N沟道SOI MOSFET退化的影响目前尚不完全清楚,并且在最近的文献中出现了一些有争议和无法解释的结果。本文通过一系列精心设计的实验来彻底研究这一问题。实验观察结果表明,随着FBE强度的增加,降解作用增强,确立了FBE电流增强作用在同时发生的侧向电场降低中对降解作用的主导作用。此外,对接地体和体偏置晶体管的价带电子隧穿产生的衬底电流的测量(类似于浮体操作)表明,与体偏置器件相关的热载流子降解机制的有效性不断提高,与测得的退化一致结果。对于P沟道SOI MOSFET,我们对各种应力条件下的老化/恢复机理进行了研究。发现最坏情况下的劣化发生在高栅极/高漏极偏置而不是传统的低栅极/高漏极偏置下的应力下。一系列实验清楚地表明,这种损坏并非像以前所认为的那样是由热空穴注入引起的,而实际上是由于器件自热加速引起的同时存在的负偏压温度应力。除了可靠性研究以外,本文还对双栅(DG)SOI结构在新型电路拓扑中的性能潜力进行了研究。这些研究的结果非常及时,因为DG-SOI MOSFET被认为是实现非经典,纳米级CMOS(超过50 nm节点)的最有前途的器件架构。提出了一种新颖的电路设计风格,其中将具有负阈值电压的对称双栅极器件(即,耗尽模式)用作负载,并且将对称双栅极器件(反转模式)用作驱动器。与“经典” CMOS相比,使用这种技术设计的基本反相器具有更好的性能。扩展了该技术,以创建健壮的,自我恢复的SOI多米诺骨牌式逻辑。

著录项

  • 作者

    Ioannou, Dimitri P.;

  • 作者单位

    George Mason University.;

  • 授予单位 George Mason University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 139 p.
  • 总页数 139
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号