首页> 外文学位 >Simulation and characterization of laser induced deformation processes.
【24h】

Simulation and characterization of laser induced deformation processes.

机译:激光诱导变形过程的仿真和表征。

获取原文
获取原文并翻译 | 示例

摘要

Laser induced deformation processes include laser forming (LF) and laser shock processing. LF is a recently developed and highly flexible thermal forming technique, and laser shock processing is an innovative mechanical process in which shock waves up to 10GPa are generated by a confined laser ablation process. The generated high pressure imparts beneficial residual stress into the surface layer of metal parts as well as shapes thin metal parts.; In laser forming, it has been known that microstructural evolution has an important effect on the deformation process, and that the typical thermal cycles in laser forming are much steeper than those in other thermal mechanical processes like welding and hot rolling. In this study, microstructural evolution in laser forming has been investigated, and a thermal-microstructural-mechanical model is developed to predict microstructural changes (phase transformations and recrystallization) and their effects on flow behavior and deformation. Grain structure and phase transformation in heat affected zone (HAZ) is experimentally characterized, and measurement of bending curvature also helps to validate the proposed model. Based on the similar methodology, two different materials have been studied: AISI 1010 low carbon steel and Ti-6Al-4V alloy. In the case of Ti-6A1-4V alloy, the initial phase ratio of Ti-alpha and Ti-beta need to be measured by X-ray diffraction.; In laser shock processing, under shock loading solid material behavior is fluidlike and shock-solid interactions play a key role in determining the induced residual stress distributions and the final deformed shape. In this work shock-solid interactions under high pressure and thus high strain rate in laser shock processing are studied and simulated based on conservation's law, equation of state and elastoplasticity of material. A series of carefully controlled experiments, including spatially resolved residual stress measurement by synchrotron X-ray diffraction and measurement of local & global bending curvatures, is conducted to validate the model. Based on numerical results, the attenuation and shock velocity variation of shock wave in laser shock processing are further analyzed. In addition, based on the well validated shock wave propagation model, opposing dual sided laser shock peening has also been investigated. In opposing dual sided LSP, the workpiece can be simultaneously irradiated or irradiated with different time lags to create different surface residual stress patterns by virtue of the interaction between the opposing shock waves. In order to better understand the wave-wave interactions under different conditions, the residual stress profiles corresponding to various workpiece thicknesses and various irradiation times were evaluated. The dynamics and anisotropy in micro scale laser peen forming of single crystal Al has been also studied based on meso scale crystal plasticity integrated with consideration of dynamics and pressure dependent crystal elastic moduli.
机译:激光诱导的变形过程包括激光成形(LF)和激光冲击处理。 LF是一种新近开发且高度灵活的热成型技术,而激光冲击加工是一种创新的机械工艺,其中受限的激光烧蚀工艺可产生高达10GPa的冲击波。产生的高压将有益的残余应力施加到金属零件的表面层中,并使薄金属零件成形。在激光成形中,众所周知,微观结构的演变对变形过程具有重要影响,并且激光成形中的典型热循环比焊接和热轧等其他热机械过程中的热循环陡得多。在这项研究中,研究了激光成形过程中的微结构演变,并建立了一个热微结构力学模型来预测微结构变化(相变和再结晶)及其对流动行为和变形的影响。实验表征了热影响区(HAZ)的晶粒结构和相变,弯曲曲率的测量也有助于验证所提出的模型。基于相似的方法,已经研究了两种不同的材料:AISI 1010低碳钢和Ti-6Al-4V合金。对于Ti-6A1-4V合金,需要通过X射线衍射测量Ti-α和Ti-β的初始相比。在激光冲击加工中,在冲击载荷作用下,固体材料的行为呈流体状,而冲击-固体相互作用在确定感应残余应力分布和最终变形形状方面起着关键作用。在这项工作中,基于守恒定律,状态方程和材料的弹塑性,研究并模拟了高压下激波-固相的相互作用,以及由此得出的高应变率。为了验证模型,进行了一系列精心控制的实验,包括通过同步加速器X射线衍射进行空间分辨残余应力测量以及局部和整体弯曲曲率的测量。根据数值结果,进一步分析了冲击波在激光冲击加工中的衰减和冲击速度变化。另外,基于充分验证的冲击波传播模型,还研究了对立的双面激光冲击喷丸。在相对的双面LSP中,借助于相对的冲击波之间的相互作用,可以同时照射工件或以不同的时滞照射工件,以产生不同的表面残余应力图案。为了更好地理解在不同条件下的波波相互作用,评估了与各种工件厚度和各种辐照时间相对应的残余应力分布。基于介观尺度的晶体可塑性,并结合动力学和压力相关的晶体弹性模量,还研究了单晶铝的微尺度激光喷丸成形中的动力学和各向异性。

著录项

  • 作者

    Fan, Yajun.;

  • 作者单位

    Columbia University.;

  • 授予单位 Columbia University.;
  • 学科 Engineering Mechanical.; Engineering Metallurgy.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 212 p.
  • 总页数 212
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;冶金工业;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号