首页> 外文学位 >Toward a robust and efficient iterative eigensolver.
【24h】

Toward a robust and efficient iterative eigensolver.

机译:迈向强大,高效的迭代特征求解器。

获取原文
获取原文并翻译 | 示例

摘要

Iterative solvers for eigenvalue problems are often the only means of computing the extremal eigenvalues of large sparse eigenproblems that arise in many engineering and scientific applications. The solvers often demand a large portion of the computational cycles on scientific computing platforms. Current parallel implementations are limited in scalability, especially on collections of clusters interconnected via a hierarchy of networking infrastructure. Also, existing solvers are often effective at finding a small or large number of eigenvalues, but not necessarily both. The algorithms can also require fine-tuning and may even miss some of the required eigenvalues, making them insufficiently robust and unnecessarily difficult to use. We improve upon the current state-of-the-art with our innovations in multigrain parallelism and our research in multimethod solvers.;We propose an efficient multimethod solver that improves robustness and ease of use. The solver will incorporate our theoretical and technological advancements described in this dissertation. These advancements focus primarily on near-optimal variants of the Jacobi Davidson method and include: alternative projection techniques that allow the solver to find a large number of eigenvalues more efficiently, a performance model for determining which of the two most competitive techniques should be used, and an asymptotic performance model for determining the relative behavior of our methods with other methods when a large number of eigenvalues is required. Through these models and extensive experimentation, an efficient and robust implementation is possible. We also developed an iterative validation algorithm that increases the confidence in the eigenvalues computed by any iterative solver, a serious drawback of iterative eigenvalue methods. The algorithm attempts to detect missed eigenvalues by reiterating the given solver with increasing block sizes and locking. Such eigenvalue software has been long awaited by users.;We developed a latency-tolerant technique, referred to as multigrain parallelism, by combining different granularities in a parallel implementation of the block Jacobi-Davidson algorithm. Block methods have traditionally been used to improve cache performance and to perform more floating-point operations between synchronizations on parallel computers. Multigrain parallelism is a different approach to latency tolerance that splits the processors into subgroups, each of which can then solve a correction equation for each block vector concurrently. We present results we obtained using our multigrain Jacobi-Davidson eigenvalue solver and show that multigrain parallelism is effective on both MPPs and collections of clusters.
机译:特征值问题的迭代求解器通常是计算在许多工程和科学应用中出现的大型稀疏特征问题的极值特征值的唯一方法。求解器通常在科学计算平台上需要很大一部分计算周期。当前的并行实现在可伸缩性方面受到限制,特别是在通过网络基础结构层次结构互连的群集集合上。同样,现有的求解器通常可以有效地找到少量或大量的特征值,但不一定两者都有。该算法还可能需要微调,甚至可能会错过一些所需的特征值,从而使其不够鲁棒,并且不必要地难以使用。我们通过在多粒度并行性方面的创新和对多方法求解器的研究来改进当前的最新技术。我们提出了一种有效的多方法求解器,它可以提高鲁棒性和易用性。该求解器将结合我们在本文中描述的理论和技术进步。这些进步主要集中在Jacobi Davidson方法的近最佳变体上,包括:替代投影技术,使求解器可以更有效地找到大量特征值;一种性能模型,用于确定应使用两种最具竞争力的技术中的哪一种;一个渐进性能模型,用于确定需要大量特征值时我们方法与其他方法的相对行为。通过这些模型和广泛的实验,可以实现高效而强大的实现。我们还开发了一种迭代验证算法,该算法可提高对任何迭代求解器计算出的特征值的置信度,这是迭代特征值方法的一个严重缺陷。该算法尝试通过增加块大小和锁定来重复给定的求解器,以检测丢失的特征值。这样的特征值软件一直受到用户的期待。我们通过在块Jacobi-Davidson算法的并行实现中结合不同的粒度,开发了一种称为延迟的技术,称为多粒度并行性。传统上,使用块方法来提高缓存性能并在并行计算机上的同步之间执行更多的浮点操作。多重粒度并行性是一种不同的延迟容忍方法,它将处理器分为多个子组,然后每个子组可以同时求解每个块向量的校正方程。我们介绍了使用杂粮Jacobi-Davidson特征值求解器获得的结果,并表明杂粮并行性对MPP和群集集合均有效。

著录项

  • 作者

    McCombs, James Robert.;

  • 作者单位

    The College of William and Mary.;

  • 授予单位 The College of William and Mary.;
  • 学科 Computer Science.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 226 p.
  • 总页数 226
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号