首页> 外文学位 >Design and analysis methodologies to reduce soft errors in nanometer VLSI circuits.
【24h】

Design and analysis methodologies to reduce soft errors in nanometer VLSI circuits.

机译:设计和分析方法可减少纳米VLSI电路中的软错误。

获取原文
获取原文并翻译 | 示例

摘要

As process technology advances into Very Deep Sub-Micron (VDSM) level, CMOS VLSI system reliability is becoming a major concern. One of the main causes of reliability reduction is caused by charge particle strikes due to cosmic radiation which create soft errors, also referred to as Single Event Upsets (SEUs). In past technologies, this problem was limited to radiation hostile environments such as space. With VDSM designs, however, low energy particles at the ground level can cause soft errors, making CMOS circuits sensitive to atmospheric neutrons, as well as to alpha particles created by the unstable isotopes that can be found in materials of a chip. Soft errors are a major problem in mission critical applications where reliability is the main concern over performance and cost, such as heart defibrillators, avionics, etc.; Our research focus is to provide design and analysis methodologies that reduce soft error in CMOS VLSI circuits implemented in nanometer process technologies. From the designer's point of view, a VLSI system consists of combinatorial logic, memory, and clock networks. We propose several design and analysis methodologies to reduce soft errors in logic, memories (SRAM), and clock networks. For logic, we pursue two different tracks: (1) Nodes sensitivity analysis and mitigation for soft errors in CMOS logic. (2) Soft Delay errors effects and analysis. For memories, we have developed an efficient Built-in Current Sensor (BICS) for the detection and localization of SEUs. We use a combination of BICS and ECC for single as well as multiple errors correction in SRAM. For the clock networks, we have analyzed the radiation-induced clock jitters and race.; Our results for various test circuits show that the accuracy achieved by our analysis approaches is close to Spice and, at the same time, they are several orders of magnitude faster than Spice. We reduced the sensitivity of nodes by applying electrical hardening technique on highly sensitive nodes which were determined by our approaches.; The reliability analysis of our new BICS shows that it can work under process, voltage, and temperature variations as well as in harsh noise environments.
机译:随着制程技术发展到超深亚微米(VDSM)级别,CMOS VLSI系统的可靠性正成为一个主要问题。可靠性降低的主要原因之一是由于宇宙射线引起的电荷粒子撞击而产生的软错误,也称为单事件翻转(SEU)。在过去的技术中,此问题仅限于辐射不利的环境,例如空间。但是,采用VDSM设计时,地平面上的低能粒子会引起软错误,从而使CMOS电路对大气中子以及芯片中发现的不稳定同位素产生的α粒子敏感。软错误是关键任务应用中的主要问题,在这些应用中,可靠性是性能和成本的主要关注点,例如心脏除颤器,航空电子设备等;我们的研究重点是提供减少纳米工艺技术中实现的CMOS VLSI电路中软错误的设计和分析方法。从设计者的角度来看,VLSI系统由组合逻辑,存储器和时钟网络组成。我们提出了几种设计和分析方法,以减少逻辑,存储器(SRAM)和时钟网络中的软错误。对于逻辑,我们追求两个不同的轨道:(1)节点灵敏度分析和CMOS逻辑中的软错误缓解措施。 (2)软延迟误差的影响及分析。对于存储器,我们开发了一种高效的内置电流传感器(BICS)用于SEU的检测和定位。我们将BICS和ECC的组合用于SRAM中的单个和多个错误校正。对于时钟网络,我们分析了辐射引起的时钟抖动和竞争。我们对各种测试电路的结果表明,我们的分析方法所达到的精度接近Spice,同时,它们比Spice快几个数量级。我们通过在我们的方法确定的高度敏感的节点上应用电硬化技术来降低节点的敏感度。我们新的BICS的可靠性分析表明,它可以在工艺,电压,温度变化以及恶劣噪声环境下工作。

著录项

  • 作者

    Gill, Balkaran Singh.;

  • 作者单位

    Case Western Reserve University.;

  • 授予单位 Case Western Reserve University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 164 p.
  • 总页数 164
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号