首页> 外文学位 >Optimal trajectory planning for mobile robots.
【24h】

Optimal trajectory planning for mobile robots.

机译:移动机器人的最佳轨迹规划。

获取原文
获取原文并翻译 | 示例

摘要

Given growing emphasis on robot autonomy, the problem of planning a trajectory for these autonomous systems in a complex environment has become increasingly important. The objective of this research is to solve trajectory generation and optimization problems for mobile robot systems with both single and multiple goals.; Considering the complexity of general trajectory planning problems, we concentrate mainly on two dynamic models: a holonomic system where velocity is a control variable and a nonholonomic system proposed by Dubins with constant velocity and constrained turning radius. For the simple holonomic model, we focus on computation of optimal trajectories with complex objective functions. We use a stochastic control framework to obtain characterizations of optimal trajectories as solutions of Hamilton-Jacobi-Bellman equations. Based on either upwind schemes or value iteration methods, we develop and evaluate alternative numerical methods for both isotropic (velocity-independent) and anisotropic (velocity-dependent) cost models. For the Dubins' vehicle model, we extend the results of Dubins and others to solve for minimum-time trajectories with diverse path and terminal constraints, characterizing solutions using Pontryagin's Maximum Principle.; A direct application of these local shortest-path solutions is the Dubins' Traveling Salesman problem (DTSP), where the goal is to find the shortest trajectory for a Dubins' vehicle given a number of locations. We extend our analytic solutions to two-point and three-point Dubins' shortest path problems to obtain a receding horizon algorithm that outperforms alternative algorithms proposed in the literature when the visiting order is known. We also combine these algorithms with existing TSP heuristics to obtain improved algorithms when the order is not known.; We also studied trajectory planning for Dubins' vehicles in the presence of moving obstacles. For stationary obstacles and holonomic vehicles, probabilistic algorithms such as rapidly-exploring random trees (RRTs) can provide guarantees of finding a path to a goal. We developed a variation of RRTs for time-varying obstacles and Dubins' dynamics. We prove probabilistic completeness for this algorithm, establishing that a path will be found if one exists. We also compared our approach with an alternative, the probabilistic roadmap algorithm, and established that our algorithm yields improvements for these problems.
机译:随着对机器人自主性的日益重视,在复杂环境中为这些自主系统规划轨迹的问题变得越来越重要。本研究的目的是解决具有单个目标和多个目标的移动机器人系统的轨迹生成和优化问题。考虑到一般轨迹规划问题的复杂性,我们主要集中在两个动力学模型上:一个完整​​的速度为控制变量的完整系统和一个由杜宾斯提出的具有恒定速度和受限转弯半径的非完整系统。对于简单的完整模型,我们专注于计算具有复杂目标函数的最佳轨迹。我们使用随机控制框架来获得最优轨迹的特征,作为Hamilton-Jacobi-Bellman方程的解。基于逆风方案或值迭代方法,我们开发并评估了各向同性(与速度无关)和各向异性(与速度有关)成本模型的替代数值方法。对于杜宾斯的车辆模型,我们扩展了杜宾斯等人的结果,以求解具有不同路径和终点约束的最小时间轨迹,并使用庞特里亚金的最大原理来表征解决方案。这些本地最短路径解决方案的直接应用是杜宾斯旅行推销员问题(DTSP),其目的是在给定多个位置的情况下,找到杜宾斯汽车的最短轨迹。我们将解析解扩展到两点和三点杜宾斯最短路径问题,以得到一种后退视野算法,该算法在已知访问顺序时优于文献中提出的替代算法。当顺序未知时,我们还将这些算法与现有的TSP启发式算法结合起来,以获得改进的算法。我们还研究了在存在移动障碍物的情况下杜宾斯车辆的轨迹规划。对于静止的障碍物和完整的车辆,概率算法(例如快速探索的随机树(RRT))可为找到目标的路径提供保证。我们针对时变障碍和杜宾斯动力学开发了多种RRT。我们证明了该算法的概率完整性,并确定了如果存在则将找到一条路径。我们还将我们的方法与另一种方法,即概率路线图算法进行了比较,并确定我们的算法可以解决这些问题。

著录项

  • 作者

    Ma, Xiang.;

  • 作者单位

    Boston University.;

  • 授予单位 Boston University.;
  • 学科 Engineering Mechanical.; Operations Research.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 159 p.
  • 总页数 159
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;运筹学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号